1.Anderson, G., The hyperadelic gamma function, Invent. Math. 95 (1989), 63–131.

2.Belyi, G. V., On Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR Ser. Mat. 8 (1979), 267–276 (in Russian; English transl., *Math. USSR Izv.* 14 (1980), 247–256).

3.Drinfeld, V. G., On quasitriangular quasi-Hopf algebras and a group closely connected with , Algebra I Analiz 2 (1990), 149–181 (in Russian; English transl., Leningrad Math. J. **2**(4) (1991), 829–860). 4.Gorin, E. A. and Lin, V. J., Algebraic equations with continuous coefficients, and certain questions of the algebraic theory of braids, Mat. Sb. 78 (1969), 579–610 (in Russian; English transl., *Math. USSR Sb.* **7** (1969), 569–596).

5.Grothendieck, A., Esquisse d'un Programme, 1984, in Geometric Galois actions, I (ed. Lochak, P. and Schneps, L.), London Mathematical Society Lecture Notes Series, Volume 242, pp. 5–48 (London Mathematical Society, 1997).

6.Ihara, Y., On beta and gamma functions associated with the Grothendieck–Teichmüller modular group, in Aspects of Galois theory (ed. Voelklein, H. et al. ), London Mathematical Society Lecture Notes Series, Volume 256, pp. 144–179 (London Mathematical Society, 1999).

7.Ihara, Y., On beta and gamma functions associated with the Grothendieck–Teichmüller modular group, II, J. Reine Angew. Math. 527 (2000), 1–11.

8.Ihara, Y. and Matsumoto, M., On Galois actions on profinite completions of braid groups, in Recent developments in the inverse Galois problem (ed. Fried, M. et al. ), Contemporary Mathematics, Volume 186, pp. 173–200 (American Mathematical Society, Providence, RI, 1995).

9.Katz, N., *p*-adic interpolation of real analytic Eisenstein series, Annals Math. 104 (1976), 459–571.

10.Lochak, P. and Schneps, L., A cohomological interpretation of the Grothendieck–Teichmüller group, Invent. Math. 127 (1997), 571–600.

11.Lochak, P., Nakamura, H. and Schneps, L., Eigenloci of 5 point configurations on the Riemann sphere and the Grothendieck–Teichmüller group, Math. J. Okayama Univ. 46 (2004), 39–75.

12.Mochizuki, S., The local pro-*p* anabelian geometry of curves, Invent. Math. 138 (1999), 319–423.

13.Mordell, L. J., Diophantine equations (Academic Press, 1969).

14.Nakamura, H., Limits of Galois representations in fundamental groups along maximal degeneration of marked curves, I, Am. J. Math. 121 (1999), 315–358.

15.Nakamura, H., Tangential base points and Eisenstein power series, in Aspects of Galois theory (ed. Voelklein, H. et al. ), London Mathematical Society Lecture Notes Series, Volume 256, pp. 202–217 (London Mathematical Society, 1999).

16.Nakamura, H., Some arithmetic in fundamental groups of affine elliptic curves, Talk at Euresco Conference, Acquafredda Maratea, 2001.

17.Nakamura, H., Limits of Galois representations in fundamental groups along maximal degeneration of marked curves, II, Proc. Symp. Pure Math. 70 (2002), 43–78.

18.Nakamura, H. and Schneps, L., On a subgroup of the Grothendieck–Teichmüller group acting on the tower of profinite Teichmüller modular groups, Invent. Math. 141 (2000), 503–560.

19.Nakamura, H. and Tsunogai, H., Harmonic and equianharmonic equations in the Grothendieck–Teichmüller group, Forum Math. 15 (2003), 877–892.

20.Nakamura, H. and Tsunogai, H., Harmonic and equianharmonic equations in the Grothendieck–Teichmüller group, II, in Primes and knots (ed. Kohno, T. and Morishita, M.), Contemporary Mathematics, Volume 416, pp. 197–211 (American Mathematical Society, Providence, RI, 2006).

21.Tamagawa, A., The Grothendieck conjecture for affine curves, Compositio Math. 109 (1997), 135–194.