Skip to main content
×
Home
    • Aa
    • Aa

ILL-POSEDNESS FOR THE COMPRESSIBLE NAVIER–STOKES EQUATIONS WITH THE VELOCITY IN $L^{6}$ FRAMEWORK

  • Jiecheng Chen (a1) and Renhui Wan (a2)
Abstract

Ill-posedness for the compressible Navier–Stokes equations has been proved by Chen et al. [On the ill-posedness of the compressible Navier–Stokes equations in the critical Besov spaces, Revista Mat. Iberoam. 31 (2015), 1375–1402] in critical Besov space $L^{p}$ $(p>6)$ framework. In this paper, we prove ill-posedness with the initial data satisfying $$\begin{eqnarray}\displaystyle \Vert \unicode[STIX]{x1D70C}_{0}-\bar{\unicode[STIX]{x1D70C}}\Vert _{{\dot{B}}_{p,1}^{\frac{3}{p}}}\leqslant \unicode[STIX]{x1D6FF},\quad \Vert u_{0}\Vert _{{\dot{B}}_{6,1}^{-\frac{1}{2}}}\leqslant \unicode[STIX]{x1D6FF}. & & \displaystyle \nonumber\end{eqnarray}$$ To accomplish this goal, we require a norm inflation coming from the coupling term $L(a)\unicode[STIX]{x1D6E5}u$ instead of $u\cdot \unicode[STIX]{x1D6FB}u$ and construct a new decomposition of the density.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

H. Bahouri , J.-Y. Chemin and R. Danchin , Fourier analysis and nonlinear partial differential equations, in Grundlehren der Mathematischen Wissenschaften (Springer, Heidelberg, 2011).

J. Bourgain and N. Pavlović , Ill-posedness of the Navier–Stokes equations in a critical space in 3D, J. Func. Anal. 255 (2008), 22332247.

F. Charve and R. Danchin , A global existence result for the compressible Navier–Stokes equations in the critical L p framework, Arch. Ration. Mech. Anal. 198 (2010), 233271.

Q. Chen , C. Miao and Z. Zhang , On the ill-posedness of the compressible Navier–Stokes equations in the critical Besov spaces, Rev. Mat. Iberoam. 31 (2015), 13751402.

N. Chikami and R. Danchin , On the well-posedness of the full compressible Navier–Stokes system in critical Besov space, J. Differential Equations 258 (2015), 34353467.

R. Danchin , Global existence in critical spaces for compressible Navier–Stokes equations, Invent. Math. 141 (2000), 579614.

R. Danchin , Global existence in critical spaces for flows of compressible viscous and heat-conductive gases, Arch. Ration. Mech. Anal. 160 (2001), 139.

R. Danchin , Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations 26 (2001), 11831233.

R. Danchin , Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density, Comm. Partial Differential Equations 32 (2007), 13731397.

H. Fujita and T. Kato , On the Navier–Stokes initial value problem I, Arch. Ration. Mech. Anal. 16 (1964), 269315.

P. Germain , Multipliers, paramultipliers, and weak-strong uniqueness for the Navier–Stokes equations, J. Differential Equations 226 (2006), 373428.

P. Germain , The second iterate for the Navier–Stokes equation, J. Funct. Anal. 255 (2008), 22482264.

X. Huang , J. Li and Z. Xin , Global well-posedness of classical solutions with large oscillations and vacuum to the three dimensional isentropic compressible Navier–Stokes equations, Comm. Pure Appl. Math. 65 (2012), 549585.

T. Kato and G. Ponce , Commutator estimates and the Euler and Navier–Stokes equations, Comm. Pure Appl. Math. 41 (1988), 891907.

Y. Sun , C. Wang and Z. Zhang , A Beale–Kato–Majda Blow-up criterion for the 3-D compressible Navier–Stokes equations, J. Math. Pures Appl. 95 (2011), 3647.

Y. Sun , C. Wang and Z. Zhang , A Beale–Kato–Majda criterion for three dimensional compressible viscous heat-conductive flows, Arch. Ration. Mech. Anal. 201 (2011), 727742.

A. F. Vasseur and C. Yu , Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations, Invent. Math. 206 (2016), 935974.

C. Wang , W. Wang and Z. Zhang , Global well-posedness of compressible Navier–Stokes equations for some classes of large initial data, Arch. Ration. Mech. Anal. 213 (2014), 171214.

Z. Xin , Blowup of smooth solutions to the compressible Navier–Stokes equation with compact density, Comm. Pure Appl. Math. 51 (1998), 229240.

T. Yoneda , Ill-posedness of the 3D Navier–Stokes equations in a generalized Besov space near BMO -1 , J. Funct. Anal 258 (2010), 33763387.

T. Zhang , Global solutions of compressible Navier–Stokes equations with a density-dependent viscosity coefficient, J. Math. Phys 52 (2011), 043510.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Institute of Mathematics of Jussieu
  • ISSN: 1474-7480
  • EISSN: 1475-3030
  • URL: /core/journals/journal-of-the-institute-of-mathematics-of-jussieu
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 6 *
Loading metrics...

Abstract views

Total abstract views: 97 *
Loading metrics...

* Views captured on Cambridge Core between 29th June 2017 - 23rd September 2017. This data will be updated every 24 hours.