Skip to main content Accessibility help

Infinite presentability of groups and condensation

  • Robert Bieri (a1), Yves Cornulier (a2), Luc Guyot (a3) and Ralph Strebel (a4)


We describe various classes of infinitely presented groups that are condensation points in the space of marked groups. A well-known class of such groups consists of finitely generated groups admitting an infinite minimal presentation. We introduce here a larger class of condensation groups, called infinitely independently presentable groups, and establish criteria which allow one to infer that a group is infinitely independently presentable. In addition, we construct examples of finitely generated groups with no minimal presentation, among them infinitely presented groups with Cantor–Bendixson rank 1, and we prove that every infinitely presented metabelian group is a condensation group.



Hide All
1.Abels, H., An example of a finitely presented solvable group, in Homological Group Theory (Proc. Sympos., Durham, 1977), London Math. Soc. Lecture Note Ser., Volume 36, pp. 205211 (Cambridge Univ. Press, Cambridge, 1979).
2.Abels, H., Finite presentability of $S$-arithmetic groups, in Compact presentability of solvable groups, Lecture Notes in Mathematics, Volume 1261 (Springer-Verlag, Berlin, 1987).
3.Abels, H. and Brown, K. S., Finiteness properties of solvable $S$-arithmetic groups: an example, J. Pure Appl. Algebra 44 (1987), 7783.
4.Adjan, S. I., Infinite irreducible systems of group identities, Dokl. Akad. Nauk SSSR 190 (1970), 499501.
5.Bass, H., Some remarks on group actions on trees, Comm. Algebra 4 (12) (1976), 10911126.
6.Baumslag, G., Wreath products and finitely presented groups, Math. Z. 75 (1960/1961), 2228.
7.Baumslag, G., Gildenhuys, D. and Strebel, R., Algorithmically insoluble problems about finitely presented solvable groups, Lie and associative algebras. I, J. Pure Appl. Algebra 39 (1–2) (1986), 5394.
8.Bieri, R. and Groves, J. R. J., The geometry of the set of characters induced by valuations, J. Reine Angew. Math. 347 (1984), 168195.
9.Bieri, R., Neumann, W. D. and Strebel, R., A geometric invariant of discrete groups, Invent. Math. 90 (3) (1987), 451477.
10.Bridson, M. R. and Miller, C. F. III, Structure and finiteness properties of subdirect products of groups, Proc. Lond. Math. Soc. (3) 98 (3) (2009), 631651.
11.Boyer, D. L., Enumeration theorems in infinite Abelian groups, Proc. Amer. Math. Soc. 7 (1956), 565570.
12.Bieri, R. and Strebel, R., Almost finitely presented soluble groups, Comment. Math. Helv. 53 (2) (1978), 258278.
13.Bieri, R. and Strebel, R., Valuations and finitely presented metabelian groups, Proc. Lond. Math. Soc. (3) 41 (3) (1980), 439464.
14.Baumslag, G., Strebel, R. and Thomson, M. W., On the multiplicator of $F/ {\gamma }_{c} R$, J. Pure Appl. Algebra 16 (2) (1980), 121132.
15.Camm, R., Simple free products, J. Lond. Math. Soc. 1 (1) (1953), 66.
16.Cannon, J. W., Floyd, W. J. and Parry, W. R., Introductory notes on Richard Thompson’s groups, Enseign. Math. (2) 42 (3–4) (1996), 215256.
17.Chabauty, C., Limite d’ensembles et géométrie des nombres, Bull. Soc. Math. France 78 (1950), 143151.
18.Champetier, C. and Guirardel, V., Limit groups as limits of free groups, Israel J. Math. 146 (2005), 175.
19.Cornulier, Y., Guyot, L. and Pitsch, W., On the isolated points in the space of groups, J. Algebra 307 (1) (2007), 254277.
20.Cornulier, Y., Guyot, L. and Pitsch, W., The space of subgroups of an abelian group, J. Lond. Math. Soc. (2) 81 (3) (2010), 727746.
21.Cornulier, Y., Infinite conjugacy classes in groups acting on trees, Groups Geom. Dyn. 3 (2) (2009), 267277.
22.Cornulier, Y., Finitely presented wreath products and double coset decompositions, Geometriae Dedicata 122 (1) (2006), 89108.
23.Cornulier, Y., On the Cantor-Bendixson rank of metabelian groups, Ann. Inst. Fourier (Grenoble) 61 (2) (2011), 593618.
24.Cornulier, Y., A sofic group away from amenable groups, Mathematische Annalen 350 (2) (2011), 269275.
25.Cornulier, Y., Stalder, Y. and Valette, A., Proper actions of wreath products and generalizations, Trans. Amer. Math. Soc 364 (2012), 31593184.
26.Culler, M. and Morgan, J. W., Group actions on $ \mathbb{R} $-trees, Proc. Lond. Math. Soc. (3) 55 (3) (1987), 571604.
27.Culler, M. and Vogtmann, K., A group-theoretic criterion for property FA, Proc. Amer. Math. Soc. 124 (3) (1996), 677683.
28.Delzant, T., Sous-groupes distingués et quotients des groupes hyperboliques, Duke Math. J. 83 (3) (1996), 661682.
29.Greendlinger, M., An analogue of a theorem of Magnus, Arch. Math. 12 (1) (1961), 9496.
30.Grigorchuk, R. I., Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat. 25 (2) (1984), 259300.
31.Grigorchuk, R. I., On the system of defining relations and the Schur multiplier of periodic groups generated by finite automata, in Groups St. Andrews 1997 in Bath, I, London Mathematical Society Lecture Note Series, Volume 260, pp. 290317 (Cambridge Univ. Press, Cambridge, 1999).
32.Grigorchuk, R., Solved and unsolved problems around one group, in Infinite groups: geometric, combinatorial and dynamical aspects, Progress in Mathematics, Volume 248, pp. 117218 (Birkhäuser, Basel, 2005).
33.Hall, P., Finiteness conditions for soluble groups, Proc. Lond. Math. Soc. (3) 4 (1954), 419436.
34.Hall, P., The Frattini subgroups of finitely generated groups, Proc. Lond. Math. Soc. (3) 11 (1961), 327352.
35.Hilton, P. J. and Stammbach, U., A course in homological algebra, second ed., Graduate Texts in Mathematics, Volume 4 (Springer-Verlag, New York, 1997).
36.Humphreys, J.E., Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, Volume 29 (Cambridge University Press, Cambridge, 1990).
37.Kleĭman, Ju. G., On some questions of the theory of varieties of groups, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1) (1983), 3774.
38.Lyndon, R. C. and Schupp, P. E., Combinatorial group theory, in Classics in mathematics. (Springer-Verlag, Berlin, 1977).
39.Lyulko, A. N., Normal subgroups of Abels groups, Mat. Zametki 36 (3) (1984), 289294.
40.Mann, A., A note on recursively presented and co-recursively presented groups, Bull. Lond. Math. Soc. 14 (2) (1982), 112118.
41.McCarthy, D., Infinite groups whose proper quotient groups are finite. I, Comm. Pure Appl. Math. 21 (1968), 545562.
42.Mennicke, J. L., Finite factor groups of the unimodular group, Ann. of Math. (2) 81 (1965), 3137.
43.Neumann, B. H., Some remarks on infinite groups, Proc. Lond. Math. Soc. (2) 12 (1937), 120127.
44.Ould Houcine, A., Embeddings in finitely presented groups which preserve the center, J. Algebra 307 (1) (2007), 123.
45.Ol’šanskiĭ, A. Ju., The finite basis problem for identities in groups, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 376384.
46.Ol’shanskiĭ, A. Yu., On residualing homomorphisms and $G$-subgroups of hyperbolic groups, Internat. J. Algebra Comput. 3 (4) (1993), 365409.
47.Robinson, D. J. S., A course in the theory of groups, second ed., Graduate Texts in Mathematics, Volume 80 (Springer-Verlag, New York, 1996).
48.Serre, J.-P., Arbres, amalgames, ${\mathrm{SL} }_{2} $, (Société Mathématique de France, Paris, 1977), avec un sommaire anglais, rédigé avec la collaboration de Hyman Bass, Astérisque, No. 46.
49.Strebel, R., Finitely presented soluble groups, in Group Theory, pp. 257314 (Academic Press, London, 1984).
50.Suslin, A. A., On the structure of the special linear group over polynomial rings, Math. USSR, Izv. 11 (1977), 221238 English.
51.Tyrer Jones, J. M., Direct products and the Hopf property, J. Aust. Math. Soc. 17 (1974), 174196. Collection of articles dedicated to the memory of Hanna Neumann, VI.
52.Vaughan-Lee, M. R., Uncountably many varieties of groups, Bull. Lond. Math. Soc. 2 (1970), 280286.
53.Vershik, A. M. and Gordon, E. I., Groups that are locally embeddable in the class of finite groups, Algebra i Analiz 9 (1) (1997), 7197.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed