Skip to main content


  • Irving Dai (a1) and Ciprian Manolescu (a2)

We compute the involutive Heegaard Floer homology of the family of three-manifolds obtained by plumbings along almost-rational graphs. (This includes all Seifert fibered homology spheres.) We also study the involutive Heegaard Floer homology of connected sums of such three-manifolds, and explicitly determine the involutive correction terms in the case that all of the summands have the same orientation. Using these calculations, we give a new proof of the existence of an infinite-rank subgroup in the three-dimensional homology cobordism group.

Hide All
1. Artin, M., Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84 (1962), 485496.
2. Artin, M., On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129136.
3. Borodzik, M. and Hom, J., Involutive Heegaard Floer homology and rational cuspidal curves, preprint, 2016, arXiv:1609.08303.
4. Boyer, S., Gordon, C. M. and Watson, L., On L-spaces and left-orderable fundamental groups, Math. Ann. 356(4) (2013), 12131245.
5. Dai, I., On the Pin(2)-equivariant monopole Floer homology of plumbed 3-manifolds, preprint, 2006, arXiv:607.03171.
6. Fintushel, R. and Stern, R. J., Instanton homology of Seifert fibred homology three spheres, Proc. Lond. Math. Soc. (3) 61(1) (1990), 109137.
7. Furuta, M., Homology cobordism group of homology 3-spheres, Invent. Math. 100(2) (1990), 339355.
8. Hendricks, K. and Manolescu, C., Involutive Heegaard Floer homology, Duke Math. J. 166(7) (2017), 12111299.
9. Hendricks, K., Manolescu, C. and Zemke, I., A connected sum formula for involutive Heegaard Floer homology, preprint, 2016, arXiv:1607.07499.
10. Juhász, A. and Thurston, D. P., Naturality and mapping class groups in Heegaard Floer homology, preprint, 2012, arXiv:1210.4996.
11. Lidman, T. and Manolescu, C., The equivalence of two Seiberg–Witten Floer homologies, preprint, 2016, arXiv:1603.00582.
12. Lin, F., Morse–Bott singularities in monopole Floer homology and the triangulation conjecture, preprint, 2014, arXiv:1404.4561.
13. Manolescu, C., Pin(2)-equivariant Seiberg–Witten Floer homology and the triangulation conjecture, J. Amer. Math. Soc. 29(1) (2016), 147176.
14. Némethi, A., On the Ozsváth–Szabó invariant of negative definite plumbed 3-manifolds, Geom. Topol. 9 (2005), 9911042.
15. Némethi, A., Graded roots and singularities, in Singularities in Geometry and Topology, pp. 394463 (World Science Publication, Hackensack, NJ, 2007).
16. Némethi, A., Lattice cohomology of normal surface singularities, Publ. Res. Inst. Math. Sci. 44(2) (2008), 507543.
17. Neumann, W. D., An invariant of plumbed homology spheres, in Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Mathematics, Volume 788, pp. 125144 (Springer, Berlin, 1980).
18. Ozsváth, P. S. and Szabó, Z., Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173(2) (2003), 179261.
19. Ozsváth, P. S. and Szabó, Z., On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003), 185224.
20. Ozsváth, P. S. and Szabó, Z., Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. (2) 159(3) (2004), 11591245.
21. Ozsváth, P. S. and Szabó, Z., Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159(3) (2004), 10271158.
22. Ozsváth, P. S. and Szabó, Z., Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202(2) (2006), 326400.
23. Siebenmann, L., On vanishing of the Rohlin invariant and nonfinitely amphicheiral homology 3-spheres, in Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Mathematics, Volume 788, pp. 172222 (Springer, Berlin, 1980).
24. Stoffregen, M., Manolescu invariants of connected sums, preprint, 2015,arXiv:1510.01286.
25. Stoffregen, M., Pin(2)-equivariant Seiberg–Witten Floer homology of Seifert fibrations, preprint, 2015, arXiv:1505.03234.
26. Tweedy, E., Heegaard Floer homology and several families of Brieskorn spheres, Topol. Appl. 160(4) (2013), 620632.
27. Zemke, I., Graph cobordisms and Heegaard Floer homology, preprint, 2015, arXiv:1512.01184.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Institute of Mathematics of Jussieu
  • ISSN: 1474-7480
  • EISSN: 1475-3030
  • URL: /core/journals/journal-of-the-institute-of-mathematics-of-jussieu
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 1
Total number of PDF views: 18 *
Loading metrics...

Abstract views

Total abstract views: 82 *
Loading metrics...

* Views captured on Cambridge Core between 4th September 2017 - 21st March 2018. This data will be updated every 24 hours.