Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T07:35:43.825Z Has data issue: false hasContentIssue false

PARITY OF THE LANGLANDS PARAMETERS OF CONJUGATE SELF-DUAL REPRESENTATIONS OF $\text{GL}(n)$ AND THE LOCAL JACQUET–LANGLANDS CORRESPONDENCE

Published online by Cambridge University Press:  19 February 2019

Yoichi Mieda*
Affiliation:
Graduate School of Mathematical Sciences, The University of Tokyo, 3–8–1 Komaba, Meguro-ku, Tokyo, 153–8914, Japan (mieda@ms.u-tokyo.ac.jp)

Abstract

We determine the parity of the Langlands parameter of a conjugate self-dual supercuspidal representation of $\text{GL}(n)$ over a non-archimedean local field by means of the local Jacquet–Langlands correspondence. It gives a partial generalization of a previous result on the self-dual case by Prasad and Ramakrishnan.

Type
Research Article
Copyright
© Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernstein, J. N., Le ‘centre’ de Bernstein, in Representations of Reductive Groups Over a Local Field (ed. Deligne, P.), Travaux en Cours, pp. 132 (Hermann, Paris, 1984).Google Scholar
Boyer, P., Mauvaise réduction des variétés de Drinfeld et correspondance de Langlands locale, Invent. Math. 138(3) (1999), 573629.Google Scholar
Carayol, H., Nonabelian Lubin–Tate theory, in Automorphic Forms, Shimura Varieties, and L-Functions, Vol. II (Ann Arbor, MI, 1988), Perspect. Math., Volume 11, pp. 1539 (Academic Press, Boston, MA, 1990).Google Scholar
Deligne, P., Kazhdan, D. and Vignéras, M.-F., Représentations des algèbres centrales simples p-adiques, in Representations of Reductive Groups Over a Local Field, Travaux en Cours, pp. 33117 (Hermann, Paris, 1984).Google Scholar
Drinfeld, V. G., Elliptic modules, Mat. Sb. (N.S.) 94(136) (1974), 594627, 656.Google Scholar
Fargues, L., Dualité de Poincaré et involution de Zelevinsky dans la cohomologie étale équivariante des espaces analytiques rigides, Preprint, 2006, https://webusers.imj-prg.fr/∼laurent.fargues/Prepublications.html.Google Scholar
Fargues, L., L’isomorphisme entre les tours de Lubin–Tate et de Drinfeld et applications cohomologiques, in L’isomorphisme entre les tours de Lubin–Tate et de Drinfeld, Progress in Mathematics, Volume 262, pp. 1325 (Birkhäuser, Basel, 2008).Google Scholar
Gan, W. T., Gross, B. H. and Prasad, D., Symplectic local root numbers, central critical L values, and restriction problems in the representation theory of classical groups, Astérisque 346 (2012), 1109. Sur les conjectures de Gross et Prasad. I.Google Scholar
Gross, B. H. and Reeder, M., Arithmetic invariants of discrete Langlands parameters, Duke Math. J. 154(3) (2010), 431508.Google Scholar
Harris, M. and Taylor, R., The Geometry and Cohomology of Some Simple Shimura Varieties, Annals of Mathematics Studies, Volume 151 (Princeton University Press, Princeton, NJ, 2001). With an appendix by Vladimir G. Berkovich.Google Scholar
Imai, N. and Tsushima, T., Local Jacquet–Langlands correspondences for simple supercuspidal representations, Kyoto J. Math. 58(3) (2018), 623638.Google Scholar
Jacquet, H., Piatetski-Shapiro, I. I. and Shalika, J. A., Conducteur des représentations du groupe linéaire, Math. Ann. 256(2) (1981), 199214.Google Scholar
Knightly, A. and Li, C., Simple supercuspidal representations of GL(n), Taiwanese J. Math. 19(4) (2015), 9951029.Google Scholar
Lubin, J. and Tate, J., Formal moduli for one-parameter formal Lie groups, Bull. Soc. Math. France 94 (1966), 4959.Google Scholar
Mieda, Y., Non-cuspidality outside the middle degree of -adic cohomology of the Lubin–Tate tower, Adv. Math. 225(4) (2010), 22872297.Google Scholar
Mok, C. P., Endoscopic classification of representations of quasi-split unitary groups, Mem. Amer. Math. Soc. 235(1108) (2015), vi+248.Google Scholar
Oi, M., Endoscopic lifting of simple supercuspidal representations of SO2n+1 to GL2n, Amer. J. Math. 141(1) (2019), 169217.Google Scholar
Oi, M., Endoscopic lifting of simple supercuspidal representations of UE/F(N) to GLN(E), Publ. Res. Inst. Math. Sci., to appear. Preprint, 2016, arXiv:1603.08316.Google Scholar
Prasad, D. and Ramakrishnan, D., Self-dual representations of division algebras and Weil groups: a contrast, Amer. J. Math. 134(3) (2012), 749767.Google Scholar
Rapoport, M. and Zink, Th., Period Spaces for p-divisible Groups, Annals of Mathematics Studies, Volume 141 (Princeton University Press, Princeton, NJ, 1996).Google Scholar
Reeder, M. and Yu, J.-K., Epipelagic representations and invariant theory, J. Amer. Math. Soc. 27(2) (2014), 437477.Google Scholar
Rogawski, J. D., Representations of GL(n) and division algebras over a p-adic field, Duke Math. J. 50(1) (1983), 161196.Google Scholar
Strauch, M., Deformation spaces of one-dimensional formal modules and their cohomology, Adv. Math. 217(3) (2008), 889951.Google Scholar