Skip to main content Accesibility Help
×
×
Home

W-ALGEBRAS FROM HEISENBERG CATEGORIES

  • Sabin Cautis (a1), Aaron D. Lauda (a2), Anthony M. Licata (a3) and Joshua Sussan (a4)
Abstract

The trace (or zeroth Hochschild homology) of Khovanov’s Heisenberg category is identified with a quotient of the algebra $W_{1+\infty }$ . This induces an action of $W_{1+\infty }$ on the center of the categorified Fock space representation, which can be identified with the action of $W_{1+\infty }$ on symmetric functions.

Copyright
References
Hide All
1. Arbesfeld, N. and Schiffmann, O., A presentation of the deformed W 1+ algebra, Springer Proc. Math. Stat. 40 (2013), 113. arXiv:1209.0429.
2. Awata, H., Fukuma, M., Matsuo, Y. and Odake, S., Determinant formulae of quasi-finite representation of 𝓦1+ algebra at lower levels, Phys. Lett. B 332(3–4) (1994), 336344. arXiv:hep-th/9402001.
3. Beliakova, A., Guliyev, Z., Habiro, K. and Lauda, A., Trace as an alternative decategorification functor, Preprint, 2014, arXiv:1409.1198.
4. Beliakova, A., Habiro, K., Lauda, A. and Webster, B., Current algebras and categorified quantum groups, Preprint, 2014, arXiv:1412.1417.
5. Beliakova, A., Habiro, K., Lauda, A. and Zivkovic, M., Trace decategorification of categorified quantum sl2 , Acta Math. Vietnam. 39(4) 425480. arXiv:1404.1806.
6. Cautis, S., Rigidity in higher representation theory, Preprint, 2014, arXiv:1409.0827.
7. Cautis, S. and Licata, A., Vertex operators and 2-representations of quantum affine algebras, Preprint, 2011, arXiv:1112.6189.
8. Cautis, S. and Licata, A., Heisenberg categorification and Hilbert schemes, Duke Math. J. 161(13) (2012), 24692547. arXiv:1009.5147.
9. Cautis, S. and Sussan, J., On a categorical Boson–Fermion correspondence communications, Math. Phys. 336(2) (2015), 649669.
10. Etingof, P. and Oblomkov, A., Quantization, orbifold cohomology, and Cherednik Algebras, in Contemporary Mathematics, Volume 417 (American Mathematical Society, Providence, RI, 2006).
11. Frenkel, E., Kac, V., Radul, A. and Wang, W., W 1+ and W (gl N ) with central charge N , Comm. Math. Phys. 170 (2000), 337357.
12. Frenkel, E. and Reshetikhin, N., Quantum affine algebas and deformations of the Virasoro and W-algebras, Comm. Math. Phys. 178 (1996), 237264.
13. Frenkel, I. and Wang, W., Virasoro algebra and wreath product convolution, J. Algebra 242 (2001), 656671.
14. Geissinger, L., Hopf algebras of symmetric functions and class functions, in Combinatoire et representation du groupe symetrique, Lecture Notes in Mathematics, Volume 579, pp. 168181 (Springer, Strasbourg, 1977).
15. Hong, J. and Yacobi, O., Polynomial representations and categorifications of Fock space II, Adv. Math. 237 (2013), 360403.
16. Kac, V., Wang, W. and Yan, C., Quasifinite representations of classical Lie subalgebras of W 1+ , Adv. Math 139 (1998), 56140. arXiv:math.QA/9801136.
17. Khovanov, M., Heisenberg algebra and a graphical calculus, Fund. Math. 225 (2014), 169210. arXiv:1009.3295.
18. Khovanov, M. and Lauda, A., A diagrammatic approach to categorification of quantum groups III, Quantum Topol. 1(1) (2010), 192. arXiv:math.QA/0807.3250.
19. Morton, H. and Samuelson, P., The HOMFLYPT skein algebra of the torus and the elliptic Hall algebra, Preprint, 2014, arXiv:1410.0859.
20. Schiffmann, O. and Vasserot, E., Cherednik algebras, W-Algebras and the equivariant cohomology of the moduli space of instantons on A2 , Publ. Math. Inst. Hautes Études Sci. 118 (2013), 213342. arXiv:1202.2756.
21. Shan, P., Varagnolo, M. and Vasserot, E., On the center of quiver-Hecke algebras, Preprint, 2014, arXiv:1411.4392.
22. Solleveld, M., Homology of graded algebras, J. Algebra 323 (2010), 16221648. arXiv:0812.1661.
23. Wang, W., Vertex algebras and the class algebras of wreath products, Proc. Lond. Math. Soc. (3) 88 (2004), 381404.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Institute of Mathematics of Jussieu
  • ISSN: 1474-7480
  • EISSN: 1475-3030
  • URL: /core/journals/journal-of-the-institute-of-mathematics-of-jussieu
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed