Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-pxp6n Total loading time: 0.28 Render date: 2021-06-20T02:15:54.247Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Fifty Years of Prefrontal Cortex Research: Impact on Assessment

Published online by Cambridge University Press:  04 December 2017

Paul W. Burgess
Affiliation:
Institute of Cognitive Neuroscience, University College London
Donald T. Stuss
Affiliation:
University of Toronto, Toronto, Ontario Canada Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada Rotman Research Institute of Baycrest, Toronto, Ontario, Canada
Corresponding
E-mail address:

Abstract

Our knowledge of the functions of the prefrontal cortex, often called executive, supervisory, or control, has been transformed over the past 50 years. After operationally defining terms for clarification, we review the impact of advances in functional, structural, and theoretical levels of understanding upon neuropsychological assessment practice as a means of identifying 11 principles/challenges relating to assessment of executive function. Three of these were already known 50 years ago, and 8 have been confirmed or emerged since. Key themes over this period have been the emergence of the use of naturalistic tests to address issues of “ecological validity”; discovery of the complexity of the frontal lobe control system; invention of new tests for clinical use; development of key theoretical frameworks that address the issue of the role of prefrontal cortex systems in the organization of human cognition; the move toward considering brain systems rather than brain regions; the advent of functional neuroimaging, and its emerging integration into clinical practice. Despite these huge advances, however, practicing neuropsychologists are still desperately in need of new ways of measuring executive function. We discuss pathways by which this might happen, including decoupling the two levels of explanation (information processing; brain structure) and integrating very recent technological advances into the neuropsychologist’s toolbox. (JINS, 2017, 23, 755–767)

Type
Section 1 – Brain Systems and Assessment
Copyright
Copyright © The International Neuropsychological Society 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Alexander, G.E., DeLong, M.R., & Strick, P.I. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357381.CrossRefGoogle ScholarPubMed
Alexander, M.P., Stuss, D.T., Picton, T., Shallice, T., & Gillingham, S. (2007). Regional frontal injuries cause distinct impairments in cognitive control. Neurology, 68, 15151523.CrossRefGoogle ScholarPubMed
Alexander, M.P., Stuss, D.T., & Fansabedian, N. (2003). California verbal learning test: Performance by patients with focal frontal and non-frontal lesions. Brain, 126, 14931503.CrossRefGoogle ScholarPubMed
Alexander, M.P., Stuss, D.T., Shallice, T., Picton, T.W., & Gillingham, S. (2005). Impaired concentration due to frontal lobe damage from two distinct lesion sites. Neurology, 65, 572579.CrossRefGoogle ScholarPubMed
Anderson, C.V., Bigler, E.D., & Blatter, D.D. (1995). Frontal lobe lesions, diffuse damage, and neuropsychological functioning in traumatic brain-injured patients. Journal of Clinical and Experimental Neuropsychology, 17(6), 900908.CrossRefGoogle ScholarPubMed
Baddeley, A.D. (1986). Working memory. Oxford: Clarendon Press.Google ScholarPubMed
Baddeley, A., Della Sala, S., Papagno, C., & Spinnler, H. (1997). Dual-task performance in dysexecutive and nondysexecutive patients with a frontal lesion. Neuropsychology, 11, 187194.CrossRefGoogle ScholarPubMed
Badre, D. (2008). Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12, 193200. doi: 10.1016/j.tics.2008.02.004 CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., Tranel, D., & Damasio, A.R. (2005). The Iowa Gambling Task and the somatic marker hypothesis: Some questions and answers. Trends in Cognitive Sciences, 9, 159162.CrossRefGoogle ScholarPubMed
Benoit, R.G., Gilbert, S.J., Volle, E., & Burgess, P.W. (2010). When I think about me and simulate you: Medial rostral prefrontal cortex and self-referential processes. NeuroImage, 50, 13401349.CrossRefGoogle ScholarPubMed
Benton, A.L. (1991). The prefrontal region: Its early history. In H.S. Levin, H.M. Eisenberg & A.L. Benton (Eds.), Frontal lobe function and dysfunction (pp 334). New York: Oxford University Press.Google Scholar
Burgess, P.W. (1997). Theory and methodology in executive function research. In P. Rabbitt (Ed.), Methodology of frontal and executive function (pp 81116). Hove, UK: Psychology Press.Google ScholarPubMed
Burgess, P.W., Alderman, N., Evans, J., Emslie, H., & Wilson, B.A. (1998). The ecological validity of tests of executive function. Journal of the International Neuropsychological Society, 4, 547558.CrossRefGoogle ScholarPubMed
Burgess, P.W., Alderman, N., Volle, E., Benoit, R.G., & Gilbert, S.J. (2009). Mesulam’s frontal lobe mystery re-examined. Restorative Neurology and Neuroscience, 27, 493506.Google ScholarPubMed
Burgess, P.W., Alderman, N., Forbes, C., Costello, A., Coates, L., Dawson, D.R., & Channon, S. (2006). The case for the development and use of “ecologically valid” measures of executive function in experimental and clinical neuropsychology. Journal of the International Neuropsychological Society, 12, 116.CrossRefGoogle ScholarPubMed
Burgess, P.W., Dumontheil, I., & Gilbert, S.J. (2007). The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends in Cognitive Sciences, 11, 290298.CrossRefGoogle ScholarPubMed
Burgess, P.W., Gonen-Yaacovi, G., & Volle, E. (2011). Functional neuroimaging studies of prospective memory: What have we learnt so far? Neuropsychologia, 49, 22462257.CrossRefGoogle ScholarPubMed
Burgess, P.W., Gonen-Yaacovi, G., & Volle, E. (2012). Rostral prefrontal cortex: What neuroimaging can learn from human neuropsychology. In B. Levine & F.I.M. Craik (Eds.), Mind and the frontal lobes: Cognition, behavior, and brain imaging (pp. 4792). New York: Oxford University Press.Google Scholar
Burgess, P.W., & Shallice, T. (1996a). Bizarre responses, rule detection and frontal lobe lesions. Cortex, 32, 241259.CrossRefGoogle ScholarPubMed
Burgess, P.W., & Shallice, T. (1996b). Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia, 34, 263273.CrossRefGoogle ScholarPubMed
Burgess, P.W., & Shallice, T. (1997). The Hayling and Brixton tests. Bury St. Edmunds, UK: Thames Valley Test Company.Google Scholar
Burgess, P.W., Veitch, E., Costello, A., and Shallice, T. (2000). The cognitive and neuroanatomical correlates of multitasking. Neuropsychologia, 38, 848863.CrossRefGoogle ScholarPubMed
Burgess, P.W., & Wu, H.-C. (2013). Rostral prefrontal cortex (Brodmann Area 10): Metacognition in the brain. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (2nd ed., pp. 524544). New York: Oxford University Press.Google Scholar
Catani, C., Dell’Acqua, F., Bizzi, A., Forkel, S.J., Williams, S.C., Simmons, A., Murphy, D.G., & Thiebaut de Schotten, M. (2012). Beyond cortical localization in clinico-anatomical correlation. Cortex, 48, 12621287.CrossRefGoogle ScholarPubMed
Channon, S. (2004). Frontal lobe dysfunction and everyday problem-solving: Social and non-social contributions. Acta Psychologica, 115(2-3), 235254.CrossRefGoogle ScholarPubMed
Christensen, A.-L. (1975). Luria’s neuropsychological investigation. New York: Spectrum Publications.Google Scholar
Cicerone, K., Levin, H., Malec, J., Stuss, D., & Whyte, J. (2006). Cognitive rehabilitation interventions for executive function: Moving from bench to bedside in patients with traumatic brain injury. Journal of Cognitive Neuroscience, 18, 12121222.CrossRefGoogle ScholarPubMed
Clark, l, Cools, R., & Robbins, T.W. (2004). The neuropsychology of ventral prefrontal cortex: Decision-making and reversal learning. Brain and Cognition, 55, 4153.CrossRefGoogle ScholarPubMed
Craik, F.I.M., Moroz, T.M., Moscovitch, M., Stuss, D.T., Winocur, G., Tulving, E., & Kapur, S. (1999). In search of the self: A positron emission tomography study. Psychological Science, 10, 2634.CrossRefGoogle Scholar
Cummings, J.L. (1995). Anatomic and behavioral aspects of frontal-subcortical circuits. In J. Grafman, K.J. Holyoak & F. Boller (Eds.), Structure and functions of the human prefrontal cortex, Vol. 769, pp. 113). New York: New York Academy of Sciences.Google Scholar
Damasio, A.R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 351, 14131420.CrossRefGoogle ScholarPubMed
Dawson, D.R., Anderson, N.D., Burgess, P.W., Cooper, E., Krpan, K.M., & Stuss, D.T. (2009). Further development of the multiple errands test: Standardized scoring, reliability, and ecological validity for the Baycrest version. Archives of Physical Medicine and Rehabilitation, 90(S1), 4151.CrossRefGoogle ScholarPubMed
Demakis, G.J. (2004). Frontal lobe damage and tests of executive processing: A meta-analysis of the category test, Stroop test, and trail-making test. Journal of Clinical and Experimental Neuropsychology, 26, 441450.CrossRefGoogle ScholarPubMed
D’Esposito, M., & Badre, D. (2012). Combining the insights derived from lesion and fMRI studies to understand the function of prefrontal cortex. In B. Levine & F.I.M. Craik (Eds.), Mind and the frontal lobes. Cognition, behavior, and brain imaging (pp. 93108). Oxford/New York: Oxford University Press.Google Scholar
Dubois, B., Slachevsky, A., Litvan, I., & Pillon, B. (2000). The FAB: A frontal assessment battery at bedside. Neurology, 55, 16211626.CrossRefGoogle ScholarPubMed
Duncan, J., & Miller, E.K. (2013). Adaptive neural coding in frontal and parietal cortex. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (2nd ed., pp. 292301). New York: Oxford University Press.Google Scholar
Duncan, J., & Owen, A.M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23, 475483.CrossRefGoogle ScholarPubMed
Duncan, J., Parr, A., Woolgar, A., Thompson, R., Bright, P., Cox, S., & Nimmo-Smith, I. (2008). Goal neglect and Spearman’s g: Competing parts of a complex task. Journal of Experimental Psychology: General, 137, 131148.CrossRefGoogle Scholar
Eslinger, P.J., & Damasio, A.R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation. Neurology, 35(12), 17311741.CrossRefGoogle ScholarPubMed
Fellows, L.K., & Farah, M.J. (2005). Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cerebral Cortex, 15, 5863.CrossRefGoogle ScholarPubMed
Floden, D., Alexander, M.P., Kubu, C., Katz, D., & Stuss, D.T. (2008). Impulsivity and risk-taking behavior in focal frontal lobe lesions. Neuropsychologia, 46, 213223.CrossRefGoogle ScholarPubMed
Floden, D., Vallesi, A., & Stuss, D.T. (2011). Task context and frontal lobe activation in the Stroop task. Journal of Cognitive Neuroscience, 23, 867879.CrossRefGoogle ScholarPubMed
Gilbert, S.J., Spengler, S., Simons, J.S.S., Steele, J.D., Lawrie, S.M., Frith, C.D., & Burgess, P.W. (2006). Functional specialisation within rostral prefrontal cortex (area 10): A meta-analysis. Journal of Cognitive Neuroscience, 18(6), 932948.CrossRefGoogle ScholarPubMed
Gilbert, S.J., Gollwitzer, P.M., Cohen, A.L., Oettingen, G., & Burgess, P.W. (2009). Separable brain systems supporting cued versus self-initiated realization of delayed intentions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 905915.Google ScholarPubMed
Gilbert, S.J., Gonen-Yaacovi, G., Benoit, R.G., Volle, E., & Burgess, P.W. (2010). Distinct functional connectivity associated with lateral versus medial rostral prefrontal cortex: A meta-analysis. NeuroImage, 53, 13591367.CrossRefGoogle ScholarPubMed
Gioia, G.A., Isquith, P.K., Guy, S.C., & Kenworthy, L. (2000). Behavior rating inventory of executive function. Child Neuropsychology, 6, 235238. doi: 10.1076/chin.6.3.235.3152 CrossRefGoogle Scholar
Gonen-Yaacovi, G., & Burgess, P.W. (2012). Prospective memory: The future for future intentions. Psychologica Belgica, 173(52/2-3), 173204.Google Scholar
Grace, J., & Malloy, P.F. (2001). Frontal Systems Behavior Scale (FrSBe). Lutz, FL: PAR.Google Scholar
Gratton, C., Nomura, E.M., Perez, F., & D’Esposito, M. (2012). Focal brain lesions to critical locations cause widespread disruption of the modular organization of the brain. Journal of Cognitive Neuroscience, 24, 12761285.CrossRefGoogle Scholar
Halstead, W.C. (1947). Brain and intelligence: A quantitative study of the frontal lobes. Chicago: University of Chicago Press.Google Scholar
Harlow, J.M. (1848). Passage of an iron bar through the head. Boston Medical and Surgical Journal, 39, 389393.Google Scholar
Helfrich, R.F., & Knight, R.T. (2016). Oscillatory dynamics of prefrontal cognitive control. Trends in Cognitive Science, 20, 916930.CrossRefGoogle ScholarPubMed
Hwang, K., Bertolero, M., Liu, W., & D’Esposito, M. (2017). The human thalamus is an integrative hub for functional brain networks. Journal of Neuroscience, 37, 55945607.CrossRefGoogle ScholarPubMed
Knight, C., Alderman, N., & Burgess, P.W. (2002). Development of a simplified version of the multiple errands test for use in hospital settings. Neuropsychological Rehabilitation, 12, 231255.CrossRefGoogle Scholar
Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302, 11811185.CrossRefGoogle ScholarPubMed
Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Science, 11, 229235.CrossRefGoogle ScholarPubMed
Levine, B., Robertson, I.H., Clare, L., Carter, G., Hong, J., Wilson, B.A., & Stuss, D.T. (2000). Rehabilitation of executive functioning: An experimental-clinical validation of Goal Management Training. Journal of the International Neuropsychological Society, 6, 299312.CrossRefGoogle ScholarPubMed
Luria, A.R. (1966). Higher cortical functions in man (2nd ed.). New York: Basic Books.Google Scholar
Manly, T., Hawkins, K., Evans, J., Woldt, K., & Robertson, I.H. (2002). Rehabilitation of executive function: Facilitation of effective goal management on complex tasks using periodic auditory alerts. Neuropsychologia, 40(3), 271281.CrossRefGoogle ScholarPubMed
Milner, B. (1963). Effects of different brain lesions on card sorting: The role of the frontal lobes. Archives of Neurology, 9, 90100.CrossRefGoogle Scholar
Norman, D.A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R.J. Davidson, G.E. Schwartz & D. Shapiro (Eds.), Consciousness and self-regulation: Advances in research. (Vol. IV, pp. 118). New York: Plenum Press.Google Scholar
Pandya, D.N., & Barnes, C.L. (1987). Architecture and connections of the frontal lobe. In E. Perecman (Ed.), The frontal lobes revisited (pp. 4172). New York: IRBN Press.Google Scholar
Pandya, D.N., & Yeterian, E.H. (1996). Morphological correlations of human and monkey frontal lobes. In A.R. Damasio, H. Damasio & Y. Christen (Eds.), Neurobiology of decision making (pp. 1346). New York: Springer-Verlag.CrossRefGoogle Scholar
Petrides, M. (2013). The mid-dorsolateral prefronto-parietal network and the epoptic process. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (2nd ed., pp. 7989). New York: Oxford University Press.Google Scholar
Perrine, K. (1993). Differential aspects of conceptual processing in the Category Test and Wisconsin Card Sorting Test. Journal of Clinical and Experimental Neuropsychology Section A: Neuropsychology, Development, and Cognition, 15, 461473.CrossRefGoogle ScholarPubMed
Picton, T.W., Stuss, D.T., Alexander, M.P., Shallice, T., Binns, M.A., & Gillingham, S. (2007). Effects of focal frontal lesions on response inhibition. Cerebral Cortex, 17, 826838.CrossRefGoogle ScholarPubMed
Picton, T.W., Stuss, D.T., Shallice, T., Alexander, M.P., & Gillingham, S. (2006). Keeping time: Effects of focal frontal lesions. Neuropsychologia, 44, 11951209.CrossRefGoogle ScholarPubMed
Pinti, P., Aichelburg, C., Lind, F., Power, C., Swingler, E., Merla, A., & Tachtsidis, I. (2015). Using fibreless, wearable fNIRS to monitor brain activity in real-world cognitive tasks. Journal of Visualised Experiments, 106, e53336. doi: 10.3791/53336 Google Scholar
Pribram, K.H. (1973). The primate frontal cortex-executive of the brain. In K.H. Pribram & A.R. Luria (Eds.), Psychophysiology of the Frontal Lobes (pp. 293314). New York: Academic Press.CrossRefGoogle Scholar
Raichle, M.E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433447. doi: 10.1146/annurev-neuro-071013-014030 CrossRefGoogle ScholarPubMed
Reitan, R.M. (1958). Validity of the trail making test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271276.CrossRefGoogle Scholar
Reitan, R.M., & Wolfson, D. (1995). Category test and trail making test as measures of frontal lobe functions. The Clinical Neuropsychologist, 9, 5056.CrossRefGoogle Scholar
Reverberi, C., Lavaroni, A., Giglib, G.L., & Skrapb, M. (2005). Specific impairments of rule induction in different frontal lobe subgroups. Neuropsychologia, 43, 460472.CrossRefGoogle ScholarPubMed
Szczepanski, S.M., & Knight, R.T. (2014). Insights into human behavior from lesions to the prefrontal cortex. Neuron, 83, 10021018.CrossRefGoogle ScholarPubMed
Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society B: Biological Sciences, 298, 199209.CrossRefGoogle ScholarPubMed
Shallice, T., & Burgess, P.W. (1991). Deficits in strategy application following frontal lobe damage in man. Brain, 114, 727741.CrossRefGoogle ScholarPubMed
Shallice, T., & Burgess, P.W. (1996). The domain of supervisory processes and temporal organisation of behaviour. Philosophical Transactions of the Royal Society of London B, 351, 14051412.CrossRefGoogle ScholarPubMed
Shallice, T., & Cooper, R. (2011). The organisation of mind. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Shallice, T., & Evans, M.E. (1978). The involvement of the frontal lobes in cognitive estimation. Cortex, 14, 294303.CrossRefGoogle ScholarPubMed
Shallice, T., Stuss, D.T., Alexander, M.P., Picton, T.W., & Derkzen, D. (2008). The multiple dimensions of sustained attention. Cortex, 44, 794805.CrossRefGoogle ScholarPubMed
Shallice, T., Stuss, D.T., Picton, T.W., Alexander, M.P., & Gillingham, S. (2008). Multiple effects of prefrontal lesions on task-switching. Frontiers in Human Neuroscience, 1, 112.Google ScholarPubMed
Shammi, P., & Stuss, D.T. (1999). Humour appreciation: A role of the right frontal lobe. Brain, 122, 657666.CrossRefGoogle ScholarPubMed
Spitzer, D., White, S., Mandy, W., & Burgess, P.W. (2016). Confabulation in children with autism. Cortex, 87, 8095.CrossRefGoogle ScholarPubMed
Stuss, D.T. (2007). New approaches to prefrontal lobe testing. In B. Miller & J. Cummings (Eds.), The human frontal lobes: Functions and disorders (2nd ed., pp. 292305). New York: Guilford Press.Google Scholar
Stuss, D.T. (2011a). Functions of the frontal lobes: Relation to executive functions. Journal of the International Neuropsychological Society, 17, 17.CrossRefGoogle ScholarPubMed
Stuss, D.T. (2011b). Traumatic brain injury: Relation to executive dysfunction and the frontal lobes. Current Opinion in Neurology, 24, 584589.CrossRefGoogle ScholarPubMed
Stuss, D.T., & Alexander, M.P. (2007). Is there a dysexecutive syndrome? Philosophical Transactions of the Royal Society of London . Series B: Biological Sciences, 362, 901915.Google Scholar
Stuss, D.T., Alexander, M.P., Shallice, T., Picton, T.W., Binns, M.A., MacDonald, R., & Katz, D.I. (2005). Multiple frontal systems controlling response speed. Neuropsychologia, 43, 396417.CrossRefGoogle ScholarPubMed
Stuss, D.T., Alexander, M.P., Hamer, L., Palumbo, C., Dempster, R., Binns, M., & Izukawa, D. (1998). The effects of focal anterior and posterior brain lesions on verbal fluency. Journal of the International Neuropsychological Society, 4, 265278.Google ScholarPubMed
Stuss, D.T., & Benson, D.F. (1983). Emotional concomitants of psychosurgery. In K.M. Heilman & P. Satz (Eds.), Advances in neuropsychology and behavioral neurology. Vol. 1. Neuropsychology of human emotion (pp. 111140). New York/London: The Guilford Press.Google Scholar
Stuss, D.T., & Benson, D.F. (1986). The frontal lobes. New York: Raven Press.Google ScholarPubMed
Stuss, D.T., Binns, M.A., Murphy, K.J., & Alexander, M.P. (2002). Dissociations within the anterior attentional system: Effects of task complexity and irrelevant information on reaction time speed and accuracy. Neuropsychology, 16, 500513.CrossRefGoogle ScholarPubMed
Stuss, D.T., Bisschop, S.M., Alexander, M.P., Levine, B., Katz, D., & Izukawa, D. (2001a). The Trail Making Test: A study in focal lesion patients. Psychological Assessment, 13, 230239.CrossRefGoogle ScholarPubMed
Stuss, D.T., Floden, D., Alexander, M.P., Levine, B., & Katz, D. (2001b). Stroop performance in focal lesion patients: Dissociation of processes and frontal lobe lesion location. Neuropsychologia, 39, 771786.CrossRefGoogle ScholarPubMed
Stuss, D.T., Gallup, G.G., & Alexander, M.P. (2001). The frontal lobes are necessary for “theory of mind”. Brain, 124, 279286.CrossRefGoogle Scholar
Stuss, D.T., Levine, B., Alexander, M.P., Hong, J., Palumbo, C., Hamer, L., & Izukawa, D. (2000). Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: Effects of lesion location and test structure on separable cognitive processes. Neuropsychologia, 38, 388402.CrossRefGoogle ScholarPubMed
Stuss, D.T., Kaplan, E.F., Benson, D.F., Weir, W.S., Naeser, M.A., & Levine, H.L. (1981). Long-term effects of prefrontal leucotomy- An overview of neuropsychologic residuals. Journal of Clinical Neuropsychology, 3, 1332.CrossRefGoogle ScholarPubMed
Stuss, D.T., & Knight, R.T. (Eds.). (2002). Principles of frontal lobe function. New York: Oxford University Press.CrossRefGoogle Scholar
Stuss, D.T., & Knight, R.T. (Eds.). (2013). Principles of frontal lobe function (2nd ed). New York: Oxford University Press.CrossRefGoogle Scholar
Stuss, D.T., Murphy, K.J., Binns, M.A., & Alexander, M.P. (2003). Staying on the job: The frontal lobes control individual performance variability. Brain, 126, 23632380.CrossRefGoogle ScholarPubMed
Stuss, D.T., Shallice, T., Alexander, M.P., & Picton, T.W. (1995). A multidisciplinary approach to anterior attentional functions. Annals of the New York Academy of Sciences, 769, 191212.CrossRefGoogle ScholarPubMed
Teuber, H.L. (1972). Unity and diversity of frontal lobe functions. Acta Neurobiologiae Experimentalis (Wars), 32, 615656.Google ScholarPubMed
Thiebaut de Schotten, M., Urbanski, M., Batrancourt, B., Levy, R., Dubois, B., Cerliani, L., & Volle, E. (2017). Rostro-caudal architecture of the frontal lobes in humans. Cerebral Cortex, 27, 40334047.Google ScholarPubMed
Thurstone, L.L., & Thurstone, T.G. (1938). Primary mental abilities. Chicago: University of Chicago Press.Google ScholarPubMed
Tilney, F. (1928). The brain, from ape to man. New York: Hoeber.Google Scholar
Vallesi, A., McIntosh, A.R., Alexander, M.P., & Stuss, D.T. (2009). fMRI evidence of a functional network setting the criteria for withholding a response. NeuroImage, 45, 537548.CrossRefGoogle ScholarPubMed
Vallesi, A., McIntosh, A.R., Crescentini, C., & Stuss, D.T. (2012). fMRI investigation of speed-accuracy strategy switching. Human Brain Mapping, 33, 16771688.CrossRefGoogle ScholarPubMed
Vallesi, A., McIntosh, A.R., Shallice, T., & Stuss, D.T. (2009). When time shapes behavior: fMRI evidence of brain correlates of temporal monitoring. Journal of Cognitive Neuroscience, 21, 11161126.CrossRefGoogle ScholarPubMed
Volle, E., Costello, A., De L. Coates, L.M., Forbes, C., Towgood, K., Gilbert, S.J., & Burgess, P.W. (2012). Dissociation between verbal response initiation and suppression after prefrontal lesions. Cerebral Cortex, 22, 24282440. doi: 10.1093/cercor/bhr322 CrossRefGoogle ScholarPubMed
Warrington, E.K. (2000). Homophone meaning generation: A new test of verbal switching for the detection of frontal lobe dysfunction. Journal of the International Neuropsychological Society, 6, 643648.CrossRefGoogle ScholarPubMed
Wheeler, M.A., Stuss, D.T., & Tulving, E. (1997). Toward a theory of episodic memory: The frontal lobes and autonoetic consciousness. Psychological Bulletin, 121, 331354.CrossRefGoogle Scholar
Wilson, B.A., Evans, J.J., Emslie, H., Alderman, N., & Burgess, P.W. (1998). The development of an ecologically valid test for assessing patients with a dysexecutive syndrome. Neuropsychological Rehabilitation, 8, 213228.CrossRefGoogle Scholar
27
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fifty Years of Prefrontal Cortex Research: Impact on Assessment
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Fifty Years of Prefrontal Cortex Research: Impact on Assessment
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Fifty Years of Prefrontal Cortex Research: Impact on Assessment
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *