Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-18T14:05:29.676Z Has data issue: false hasContentIssue false

Amphetamine Modestly Improves Conners’ Continuous Performance Test Performance in Healthy Adults

Published online by Cambridge University Press:  16 October 2017

David A. MacQueen
Affiliation:
Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, California Research Service, VA San Diego Healthcare System, San Diego, California
Arpi Minassian
Affiliation:
Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, California Center for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, California
Brook L. Henry
Affiliation:
Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, California
Mark A. Geyer
Affiliation:
Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, California Research Service, VA San Diego Healthcare System, San Diego, California
Jared W. Young
Affiliation:
Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, California Research Service, VA San Diego Healthcare System, San Diego, California
William Perry*
Affiliation:
Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, California
*
Correspondence and reprint requests to: William Perry, Department of Psychiatry, University of California San Diego, 200 West Arbor Drive, MC 8218, San Diego, CA 92103-8218. E-mail: wperry@ucsd.edu

Abstract

Objectives: Amphetamine improves vigilance as assessed by continuous performance tests (CPT) in children and adults with attention deficit hyperactivity disorder (ADHD). Less is known, however, regarding amphetamine effects on vigilance in healthy adults. Thus, it remains unclear whether amphetamine produces general enhancement of vigilance or if these effects are constrained to the remediation of deficits in patients with ADHD. Methods: We tested 69 healthy adults (35 female) on a standardized CPT (Conner’s CPT-2) after receiving 10- or 20-mg d-amphetamine or placebo. To evaluate potential effects on learning, impulsivity, and perseveration, participants were additionally tested on the Iowa Gambling Task (IGT) and Wisconsin Card Sorting Task (WCST). Results: Participants receiving placebo exhibited the classic vigilance decrement, demonstrated by a significant reduction in attention (D’) across the task. This vigilance decrement was not observed, however, after either dose of amphetamine. Consistent with enhanced vigilance, the 20-mg dose also reduced reaction time variability across the task and the ADHD confidence index. The effects of amphetamine appeared to be selective to vigilance since no effects were observed on the IGT, WCST, or response inhibition/perseveration measures from the CPT. Conclusions: The present data support the premise that amphetamine improves vigilance irrespective of disease state. Given that amphetamine is a norepinephrine/dopamine transporter inhibitor and releaser, these effects are informative regarding the neurobiological substrates of attentional control. (JINS, 2018, 24, 283–293)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to the manuscript

References

Abouzari, M., Oberg, S., Gruber, A., & Tata, M. (2015). Interactions among attention-deficit hyperactivity disorder (ADHD) and problem gambling in a probabilistic reward-learning task. Behavioural Brain Research, 291, 237243. doi: 10.1016/j.bbr.2015.05.041 CrossRefGoogle Scholar
Abouzari, M., Oberg, S., & Tata, M. (2016). Theta-band oscillatory activity differs between gamblers and nongamblers comorbid with attention-deficit hyperactivity disorder in a probabilistic reward-learning task. Behavioural Brain Research, 312, 195200. doi: 10.1016/j.bbr.2016.06.031 CrossRefGoogle Scholar
Advokat, C. (2010). What are the cognitive effects of stimulant medications? Emphasis on adults with attention-deficit/hyperactivity disorder (ADHD). Neuroscience & Biobehavioral Reviews, 34(8), 12561266. doi: http://dx.doi.org/10.1016/j.neubiorev.2010.03.006 Google Scholar
Antshel, K.M., Faraone, S.V., Maglione, K., Doyle, A.E., Fried, R., Seidman, L.J., && Biederman, J. (2010). Executive functioning in high-IQ adults with ADHD. Psychological Medicine, 40(11), 19091918. doi: 10.1017/S0033291709992273 Google Scholar
Bechara, A., Damasio, A.R., Damasio, H., & Anderson, S.W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50(1-3), 715.Google Scholar
Biederman, J., Petty, C.R., Ball, S.W., Fried, R., Doyle, A.E., Cohen, D., &&Faraone, S.V. (2009). Are cognitive deficits in attention deficit/hyperactivity disorder related to the course of the disorder? A prospective controlled follow-up study of grown up boys with persistent and remitting course. Psychiatry Research, 170(2-3), 177182. doi: 10.1016/j.psychres.2008.09.010 Google Scholar
Bizot, J.C., David, S., & Trovero, F. (2011). Effects of atomoxetine, desipramine, d-amphetamine and methylphenidate on impulsivity in juvenile rats, measured in a T-maze procedure. Neuroscience Letters, 489(1), 2024.Google Scholar
Breaux, R.P., Griffith, S.F., & Harvey, E.A. (2016). Preschool neuropsychological measures as predictors of later attention deficit hyperactivity disorder. Journal of Abnormal Child Psychology, 44, 14551471. doi: 10.1007/s10802-016-0140-1 CrossRefGoogle ScholarPubMed
Castells, X., Ramos-Quiroga, J.A., Bosch, R., Nogueira, M., & Casas, M. (2011). Amphetamines for attention deficit hyperactivity disorder (ADHD) in adults. The Cochrane Database of Systematic Reviews, (6), CD007813. doi: 10.1002/14651858.CD007813.pub2 Google ScholarPubMed
Conners, C.K. (2000). Conners’ Continuous Performance Test (CPT-2) computer program for windows, technical guide, and software manual. Toronto, ON: Multi Health Systems, Inc.Google Scholar
Conners, C.K., Epstein, J.N., Angold, A., & Klaric, J. (2003). Continuous performance test performance in a normative epidemiological sample. Journal of Abnormal Child Psychology, 31(5), 555562.Google Scholar
Cooper, N.J., Keage, H., Hermens, D., Williams, L.M., Debrota, D., Clark, C.R., && Gordon, E. (2005). The dose-dependent effect of methylphenidate on performance, cognition and psychophysiology. Journal of Integrative Neuroscience, 4(1), 123144.Google Scholar
Corkum, P.V., & Siegel, L.S. (1993). Is the continuous performance task a valuable research tool for use with children with attention-deficit-hyperactivity disorder? Journal of Child Psychology and Psychiatry, 34(7), 12171239.Google Scholar
de Wit, H., Enggasser, J.L., & Richards, J.B. (2002). Acute administration of d-amphetamine decreases impulsivity in healthy volunteers. Neuropsychopharmacology, 27(5), 813825.Google Scholar
Epstein, J.N., Conners, C.K., Hervey, A.S., Tonev, S.T., Arnold, L.E., & Abikoff, H.B., . . . MTA Cooperative Study Group. (2006). Assessing medication effects in the MTA study using neuropsychological outcomes. Journal of Child Psychology and Psychiatry, 47(5), 446456. doi: 10.1111/j.1469-7610.2005.01469.x Google Scholar
Ernst, M., Zametkin, A.J., Matochik, J., Schmidt, M., Jons, P.H., Liebenauer, L.L., & Cohen, R.M. (1997). Intravenous dextroamphetamine and brain glucose metabolism. Neuropsychopharmacology, 17(6), 391401. doi: 10.1016/S0893-133X(97)00088-2 Google Scholar
Farah, M.J. (2015). NEUROSCIENCE. The unknowns of cognitive enhancement. Science, 350(6259), 379380. doi: 10.1126/science.aad5893 Google Scholar
First, M.B., Williams, J.B.W., Spitzer, R.L., & Gibbon, M. (2007). Structured clinical interview for DSM-IV-TR Axis I disorders, clinical trials version (SCID-CT). New York: Biometrics Research, New York State Psychiatric Institute.Google Scholar
Fischer, M., Barkley, R.A., Edelbrock, C.S., & Smallish, L. (1990). The adolescent outcome of hyperactive children diagnosed by research criteria: II. Academic, attentional, and neuropsychological status. Journal of Consulting and Clinical Psychology, 58(5), 580588.Google Scholar
Fleming, K., Bigelow, L.B., Weinberger, D.R., & Goldberg, T.E. (1995). Neuropsychological effects of amphetamine may correlate with personality characteristics. Psychopharmacology Bulletin, 31(2), 357362.Google Scholar
Garon, N., Moore, C., & Waschbusch, D.A. (2006). Decision making in children with ADHD only, ADHD-anxious/depressed, and control children using a child version of the Iowa Gambling Task. Journal of Attention Disorders, 9(4), 607619. doi: 10.1177/1087054705284501 Google Scholar
Greve, K.W. (2001). The WCST-64: A standardized short-form of the Wisconsin Card Sorting Test. The Clinical Neuropsychologist, 15(2), 228234. doi: 10.1076/clin.15.2.228.1901 Google Scholar
Gu, S.L., Gau, S.S., Tzang, S.W., & Hsu, W.Y. (2013). The ex-Gaussian distribution of reaction times in adolescents with attention-deficit/hyperactivity disorder. Research in Developmental Disabilities, 34(11), 37093719.Google Scholar
Halperin, J.M., Wolf, L.E., Pascualvaca, D.M., Newcorn, J.H., Healey, J.M., O’Brien, J.D., & Young, J.G. (1988). Differential assessment of attention and impulsivity in children. Journal of the American Academy of Child and Adolescent Psychiatry, 27(3), 326329. doi: 10.1097/00004583-198805000-00010 CrossRefGoogle ScholarPubMed
Hamidovic, A., Dlugos, A., Skol, A., Palmer, A.A., & de Wit, H. (2009). Evaluation of genetic variability in the dopamine receptor D2 in relation to behavioral inhibition and impulsivity/sensation seeking: An exploratory study with d-amphetamine in healthy participants. Experimental and Clinical Psychopharmacology, 17(6), 374383.Google Scholar
Hayward, A., Tomlinson, A., & Neill, J.C. (2016). Low attentive and high impulsive rats: A translational animal model of ADHD and disorders of attention and impulse control. Pharmacology & Therapeutics, 158, 4151. doi: 10.1016/j.pharmthera.2015.11.010 Google Scholar
Helms, C.M., Reeves, J.M., & Mitchell, S.H. (2006). Impact of strain and D-amphetamine on impulsivity (delay discounting) in inbred mice. Psychopharmacology, 188(2), 144151.CrossRefGoogle ScholarPubMed
Hobson, C.W., Scott, S., & Rubia, K. (2011). Investigation of cool and hot executive function in ODD/CD independently of ADHD. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 52(10), 10351043. doi: 10.1111/j.1469–7610.2011.02454.x Google Scholar
Huang, Y.S., & Tsai, M.H. (2011). Long–term outcomes with medications for attention–deficit hyperactivity disorder: Current status of knowledge. CNS Drugs, 25(7), 539554. doi: 10.2165/11589380-000000000-00000 CrossRefGoogle ScholarPubMed
Ilieva, I., Boland, J., & Farah, M.J. (2013). Objective and subjective cognitive enhancing effects of mixed amphetamine salts in healthy people. Neuropharmacology, 64, 496505.Google Scholar
Ilieva, I., & Farah, M.J. (2013). Cognitive enhancement with amphetamine: History repeats itself. AJOB Neuroscience, 4(1), 2425. doi: 10.1080/21507740.2012.762069 Google Scholar
Ince Tasdelen, B., Karakaya, E., & Oztop, D.B. (2015). Effects of atomoxetine and osmotic release oral system-methylphenidate on executive functions in patients with combined type attention-deficit/hyperactivity disorder. Journal of Child and Adolescent Psychopharmacology, 25(6), 494500. doi: 10.1089/cap.2014.0155 Google Scholar
Kempton, S., Vance, A., Maruff, P., Luk, E., Costin, J., & Pantelis, C. (1999). Executive function and attention deficit hyperactivity disorder: Stimulant medication and better executive function performance in children. Psychological Medicine, 29(3), 527538.Google Scholar
Klee, S.H., & Garfinkel, B.D. (1983). The computerized continuous performance task: A new measure of inattention. Journal of Abnormal Child Psychology, 11(4), 487495.Google Scholar
Klorman, R., Bauer, L.O., Coons, H.W., Lewis, J.L., Peloquin, J., Perlmutter, R.A., & Strauss, J. (1984). Enhancing effects of methylphenidate on normal young adults’ cognitive processes. Psychopharmacology Bulletin, 20(1), 39.Google ScholarPubMed
Lange, K.W., Reichl, S., Lange, K.M., Tucha, L., & Tucha, O. (2010). The history of attention deficit hyperactivity disorder. Attention Deficit and Hyperactivity Disorders, 2(4), 241255. doi: 10.1007/s12402-010-0045-8 Google Scholar
Li, F., He, N., Li, Y., Chen, L., Huang, X., Lui, S., & Gong, Q. (2014). Intrinsic brain abnormalities in attention deficit hyperactivity disorder: A resting-state functional MR imaging study. Radiology, 272(2), 514523. doi: 10.1148/radiol.14131622 CrossRefGoogle ScholarPubMed
Lin, H.Y., Hwang-Gu, S.L., & Gau, S.S. (2015). Intra-individual reaction time variability based on ex-Gaussian distribution as a potential endophenotype for attention-deficit/hyperactivity disorder. Acta Psychiatrica Scandinavica, 132(1), 3950.Google Scholar
Losier, B.J., McGrath, P.J., & Klein, R.M. (1996). Error patterns on the continuous performance test in non-medicated and medicated samples of children with and without ADHD: A meta-analytic review. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 37(8), 971987.Google Scholar
Malloy-Diniz, L., Fuentes, D., Leite, W.B., Correa, H., & Bechara, A. (2007). Impulsive behavior in adults with attention deficit/ hyperactivity disorder: Characterization of attentional, motor and cognitive impulsiveness. Journal of the International Neuropsychological Society, 13(4), 693698. doi: 10.1017/S1355617707070889 Google Scholar
Martel, M., Nikolas, M., & Nigg, J.T. (2007). Executive function in adolescents with ADHD. Journal of the American Academy of Child and Adolescent Psychiatry, 46(11), 14371444. doi: 10.1097/chi.0b013e31814cf953 Google Scholar
Masunami, T., Okazaki, S., & Maekawa, H. (2009). Decision-making patterns and sensitivity to reward and punishment in children with attention-deficit hyperactivity disorder. International Journal of Psychophysiology, 72(3), 283288.Google Scholar
Matochik, J.A., Nordahl, T.E., Gross, M., Semple, W.E., King, A.C., Cohen, R.M., && Zametkin, A.J. (1993). Effects of acute stimulant medication on cerebral metabolism in adults with hyperactivity. Neuropsychopharmacology, 8(4), 377386. doi: 10.1038/npp.1993.38 Google Scholar
Mattay, V.S., Berman, K.F., Ostrem, J.L., Esposito, G., Van Horn, J.D., Bigelow, L.B., && Weinberger, D.R. (1996). Dextroamphetamine enhances “neural network-specific” physiological signals: A positron-emission tomography rCBF study. The Journal of Neuroscience, 16(15), 48164822.Google Scholar
Mattay, V.S., Goldberg, T.E., Fera, F., Hariri, A.R., Tessitore, A., Egan, M.F., & Weinberger, D.R. (2003). Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 61866191. doi: 10.1073/pnas.0931309100 Google Scholar
McKenna, B.S., Young, J.W., Dawes, S.E., Asgaard, G.L., & Eyler, L.T. (2013). Bridging the bench to bedside gap: Validation of a reverse-translated rodent continuous performance test using functional magnetic resonance imaging. Psychiatry Research, 212(3), 183191. doi: 10.1016/j.pscychresns.2013.01.005 Google Scholar
Miller, M., Sheridan, M., Cardoos, S.L., & Hinshaw, S.P. (2013). Impaired decision-making as a young adult outcome of girls diagnosed with attention-deficit/hyperactivity disorder in childhood. Journal of the International Neuropsychological Society, 19(1), 110114. doi: 10.1017/S1355617712000975 Google Scholar
Minassian, A., Young, J.W., Cope, Z.A., Henry, B.L., Geyer, M.A., & Perry, W. (2016). Amphetamine increases activity but not exploration in humans and mice. Psychopharmacology, 233(2), 225233. doi: 10.1007/s00213-015-4098-4 Google Scholar
Punja, S., Shamseer, L., Hartling, L., Urichuk, L., Vandermeer, B., Nikles, J., && Vohra, S. (2016). Amphetamines for attention deficit hyperactivity disorder (ADHD) in children and adolescents. The Cochrane Database of Systematic Reviews, 2, CD009996. doi: 10.1002/14651858.CD009996.pub2 Google Scholar
Rapoport, J.L., Buchsbaum, M.S., Zahn, T.P., Weingartner, H., Ludlow, C., & Mikkelsen, E.J. (1978). Dextroamphetamine: Cognitive and behavioral effects in normal prepubertal boys. Science, 199(4328), 560563.Google Scholar
Rasmussen, N. (2006). Making the first anti-depressant: Amphetamine in American medicine, 1929-1950. Journal of the History of Medicine and Allied Sciences, 61(3), 288323. doi: 10.1093/jhmas/jrj039 Google Scholar
Riccio, C.A., Waldrop, J.J., Reynolds, C.R., & Lowe, P. (2001). Effects of stimulants on the continuous performance test (CPT): Implications for CPT use and interpretation. The JOURNAL of Neuropsychiatry and Clinical Neurosciences, 13(3), 326335. doi: 10.1176/jnp.13.3.326 Google Scholar
Rivalan, M., Gregoire, S., & Dellu-Hagedorn, F. (2007). Reduction of impulsivity with amphetamine in an appetitive fixed consecutive number schedule with cue for optimal performance in rats. Psychopharmacology, 192(2), 171182.Google Scholar
Rosvold, H.E., Mirsky, A.F., Sarason, I., Bransome, E.D. Jr., & Beck, L.H. (1956). A continuous performance test of brain damage. Journal of Consulting Psychology, 20(5), 343350.Google Scholar
See, J.E., Howe, S.R., Warm, J.S., & Dember, W.N. (1995). Meta-analysis of the sensitivity decrement in vigilance. Psychological Bulletin, 117(2), 230249. doi: 10.1037/0033-2909.117.2.230 CrossRefGoogle Scholar
Silva, K.L., Rovaris, D.L., Guimaraes-da-Silva, P.O., Victor, M.M., Salgado, C.A., Vitola, E.S., & Bau, C.H. (2014). Could comorbid bipolar disorder account for a significant share of executive function deficits in adults with attention-deficit hyperactivity disorder? Bipolar Disorders, 16(3), 270276. doi: 10.1111/bdi.12158 Google Scholar
Slattum, P.W., Venitz, J., & Barr, W.H. (1996). Comparison of methods for the assessment of central nervous system stimulant response after dextroamphetamine administration to healthy male volunteers. Journal of Clinical Pharmacology, 36(11), 10391050.Google Scholar
Smith, M.E., & Farah, M.J. (2011). Are prescription stimulants “smart pills”? The epidemiology and cognitive neuroscience of prescription stimulant use by normal healthy individuals. Psychological Bulletin, 137(5), 717741. doi: 10.1037/a0023825 Google Scholar
Sostek, A.J., Buchsbaum, M.S., & Rapoport, J.L. (1980). Effects of amphetamine on vigilance performance in normal and hyperactive children. Journal of Abnormal Child Psychology, 8(4), 491500.Google Scholar
Strauss, J., Lewis, J.L., Klorman, R., Peloquin, L.J., Perlmutter, R.A., & Salzman, L.F. (1984). Effects of methylphenidate on young adults’ performance and event-related potentials in a vigilance and a paired-associates learning test. Psychophysiology, 21(6), 609621.CrossRefGoogle Scholar
Sykes, D.H., Douglas, V.I., & Morgenstern, G. (1973). Sustained attention in hyperactive children. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 14(3), 213220.Google Scholar
Tamm, L., Epstein, J.N., Denton, C.A., Vaughn, A.J., Peugh, J., & Willcutt, E.G. (2014). Reaction time variability associated with reading skills in poor readers with ADHD. Journal of the International Neuropsychological Society, 20(3), 292301.Google Scholar
Tannock, R., & Schachar, R. (1992). Methylphenidate and cognitive perseveration in hyperactive children. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 33(7), 12171228.Google Scholar
Toplak, M.E., Jain, U., & Tannock, R. (2005). Executive and motivational processes in adolescents with Attention-Deficit-Hyperactivity Disorder (ADHD). Behavioral and Brain Functions, 1(1), 8. doi: 10.1186/1744-9081-1-8 Google Scholar
Uran, P., & Kilic, B.G. (2015). Comparison of neuropsychological performances and behavioral patterns of children with attention deficit hyperactivity disorder and severe mood dysregulation. European Child & Adolescent Psychiatry, 24(1), 2130. doi: 10.1007/s00787-014-0529-8 CrossRefGoogle ScholarPubMed
Vaurio, L., Riley, E.P., & Mattson, S.N. (2008). Differences in executive functioning in children with heavy prenatal alcohol exposure or attention-deficit/hyperactivity disorder. Journal of the International Neuropsychological Society, 14(1), 119129. doi: 10.1017/S1355617708080144 CrossRefGoogle ScholarPubMed
Weafer, J., & de Wit, H. (2013). Inattention, impulsive action, and subjective response to D-amphetamine. Drug and Alcohol Dependence, 133(1), 127133.Google Scholar
Weyandt, L.L., & DuPaul, G. (2006). ADHD in college students. Journal of Attention Disorders, 10(1), 919. doi: 10.1177/1087054705286061 Google Scholar
Weyandt, L.L., Linterman, I., & Rice, J.A. (1995). Reported prevalence of attentional difficulties in a general sample of college students. Journal of Psychopathology and Behavioral Assessment, 17(3), 293304. doi: 10.1007/bf02229304 Google Scholar
Wong, Y.N., Wang, L., Hartman, L., Simcoe, D., Chen, Y., Laughton, W., & Grebow, P. (1998). Comparison of the single-dose pharmacokinetics and tolerability of modafinil and dextroamphetamine administered alone or in combination in healthy male volunteers. Journal of Clinical Pharmacology, 38(10), 971978.Google Scholar
Yildiz, O., Sismanlar, S.G., Memik, N.C., Karakaya, I., & Agaoglu, B. (2011). Atomoxetine and methylphenidate treatment in children with ADHD: The efficacy, tolerability and effects on executive functions. Child Psychiatry & Human Development, 42(3), 257269. doi: 10.1007/s10578-010-0212-3 Google Scholar
Young, J.W., Light, G.A., Marston, H.M., Sharp, R., & Geyer, M.A. (2009). The 5-choice continuous performance test: Evidence for a translational test of vigilance for mice. PLoS One, 4(1), e4227. doi: 10.1371/journal.pone.0004227 Google Scholar
Young, J.W., Powell, S.B., Scott, C.N., Zhou, X., & Geyer, M.A. (2011). The effect of reduced dopamine D4 receptor expression in the 5-choice continuous performance task: Separating response inhibition from premature responding. Behavioural Brain Research, 222(1), 183192. doi: 10.1016/j.bbr.2011.03.054 Google Scholar
Young, J.W., Geyer, M.A., Rissling, A.J., Sharp, R.F., Eyler, L.T., Asgaard, G., &&Light, G.A. (2013). Reverse translation of the rodent 5C-CPT reveals that the impaired attention of people with schizophrenia is similar to scopolamine-induced deficits in mice. Translational Psychiatry. 3:e324.Google Scholar
Young, J.W., Bismark, A.W., Sun, Y., Zhang, W., McIlwain, M., Grootendorst, I., &&Light, G.A. (2017). Neurophysiological characterization of attentional performance dysfunction in schizophrenia patients in a reverse-translated task. Neuropsychopharmacology, 42(6), 13381348.Google Scholar
Zheng, Y., Liang, J.M., Gao, H.Y., Yang, Z.W., Jia, F.J., Liang, Y.Z., & Zhuo, J.M. (2015). An open-label, self-control, prospective study on cognitive function, academic performance, and tolerability of osmotic-release oral system methylphenidate in children with attention-deficit hyperactivity disorder. Chinese Medical Journal, 128(22), 29882997. doi: 10.4103/0366-6999.168948 Google Scholar