Skip to main content Accessibility help

Brain Network Organization and Social Executive Performance in Frontotemporal Dementia

  • Lucas Sedeño (a1) (a2) (a3), Blas Couto (a1) (a2) (a3), Indira García-Cordero (a1), Margherita Melloni (a1) (a2) (a3), Sandra Baez (a1) (a2) (a3), Juan Pablo Morales Sepúlveda (a2), Daniel Fraiman (a3) (a4), David Huepe (a2), Esteban Hurtado (a2) (a5), Diana Matallana (a6), Rodrigo Kuljis (a2), Teresa Torralva (a1) (a2) (a7), Dante Chialvo (a3) (a8), Mariano Sigman (a9), Olivier Piguet (a10) (a7), Facundo Manes (a1) (a2) (a3) (a7) and Agustin Ibanez (a1) (a2) (a3) (a7) (a11)...


Objectives: Behavioral variant frontotemporal dementia (bvFTD) is characterized by early atrophy in the frontotemporoinsular regions. These regions overlap with networks that are engaged in social cognition-executive functions, two hallmarks deficits of bvFTD. We examine (i) whether Network Centrality (a graph theory metric that measures how important a node is in a brain network) in the frontotemporoinsular network is disrupted in bvFTD, and (ii) the level of involvement of this network in social-executive performance. Methods: Patients with probable bvFTD, healthy controls, and frontoinsular stroke patients underwent functional MRI resting-state recordings and completed social-executive behavioral measures. Results: Relative to the controls and the stroke group, the bvFTD patients presented decreased Network Centrality. In addition, this measure was associated with social cognition and executive functions. To test the specificity of these results for the Network Centrality of the frontotemporoinsular network, we assessed the main areas from six resting-state networks. No group differences or behavioral associations were found in these networks. Finally, Network Centrality and behavior distinguished bvFTD patients from the other groups with a high classification rate. Conclusions: bvFTD selectively affects Network Centrality in the frontotemporoinsular network, which is associated with high-level social and executive profile. (JINS, 2016, 22, 250–262)

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Brain Network Organization and Social Executive Performance in Frontotemporal Dementia
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Brain Network Organization and Social Executive Performance in Frontotemporal Dementia
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Brain Network Organization and Social Executive Performance in Frontotemporal Dementia
      Available formats


Corresponding author

Correspondence and reprint requests to: Agustin Ibañez. Laboratory of Experimental Psychology and Neuroscience (LPEN), INECO (Institute of Cognitive Neurology), and Institute of Neuroscience, Favaloro, Favaloro University, C1078AAI, Pacheco de Melo 1860, Buenos Aires, Argentina. E-mail:


Hide All
Agosta, F., Sala, S., Valsasina, P., Meani, A., Canu, E., Magnani, G., & Filippi, M. (2013). Brain network connectivity assessed using graph theory in frontotemporal dementia. Neurology, 81(2), 134143. doi:10.1212/WNL.0b013e31829a33f8
Altman, N.S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46(3), 175185. doi:10.1080/00031305.1992.10475879
Baez, S., Couto, B., Torralva, T., Sposato, L.A., Huepe, D., Montanes, P., & Ibanez, A. (2014). Comparing moral judgments of patients with frontotemporal dementia and frontal stroke. JAMA Neurology, 71(9), 11721176. doi:10.1001/jamaneurol.2014.347
Baggio, H.C., Sala-Llonch, R., Segura, B., Marti, M.J., Valldeoriola, F., Compta, Y., & Junque, C. (2014). Functional brain networks and cognitive deficits in Parkinson’s disease. Human Brain Mapping, 35(9), 46204634. doi:10.1002/hbm.22499
Baron-Cohen, S., Jolliffe, T., Mortimore, C., & Robertson, M. (1997). Another advanced test of theory of mind: Evidence from very high functioning adults with autism or asperger syndrome. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 38(7), 813822.
Barttfeld, P., Wicker, B., Cukier, S., Navarta, S., Lew, S., Leiguarda, R., & Sigman, M. (2012). State-dependent changes of connectivity patterns and functional brain network topology in autism spectrum disorder. Neuropsychologia, 50(14), 36533662. doi:10.1016/j.neuropsychologia.2012.09.047
Barttfeld, P., Wicker, B., McAleer, P., Belin, P., Cojan, Y., Graziano, M., & Sigman, M. (2013). Distinct patterns of functional brain connectivity correlate with objective performance and subjective beliefs. Proceedings of the National Academy of Sciences of the United Sates of America, 110(28), 1157711582. doi:10.1073/pnas.1301353110
Beckmann, C.F., DeLuca, M., Devlin, J.T., & Smith, S.M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 360(1457), 10011013. doi:10.1098/rstb.2005.1634
Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 25(2), 163177.
Brier, M.R., Thomas, J.B., Fagan, A.M., Hassenstab, J., Holtzman, D.M., Benzinger, T.L., & Ances, B.M. (2014). Functional connectivity and graph theory in preclinical Alzheimer’s disease. Neurobiol Aging, 35(4), 757768. doi:10.1016/j.neurobiolaging.2013.10.081
Buckner, R.L., Sepulcre, J., Talukdar, T., Krienen, F.M., Liu, H., Hedden, T., & Johnson, K.A. (2009). Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer’s disease. The Journal of Neuroscience, 29(6), 18601873. doi:10.1523/JNEUROSCI.5062-08.2009
Butman, J., Allegri, R.F., Harris, P., & Drake, M. (2000). Spanish verbal fluency. Normative data in Argentina. Medicina (B Aires), 60(5 Pt 1), 561564.
Couto, B., Manes, F., Montanes, P., Matallana, D., Reyes, P., Velasquez, M., & Ibanez, A. (2013). Structural neuroimaging of social cognition in progressive non-fluent aphasia and behavioral variant of frontotemporal dementia. Frontiers in Human Neuroscience, 7, 467, doi:10.3389/fnhum.2013.00467
Chow, T.W., Hynan, L.S., & Lipton, A.M. (2006). MMSE scores decline at a greater rate in frontotemporal degeneration than in AD. Dementia and Geriatric Cognitive Disorders, 22(3), 194199. doi:10.1159/000094870
Damoiseaux, J.S., Rombouts, S.A., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., & Beckmann, C.F. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United Sates of America, 103(37), 1384813853. doi:10.1073/pnas.0601417103
Day, G.S., Farb, N.A., Tang-Wai, D.F., Masellis, M., Black, S.E., Freedman, M., & Chow, T.W. (2013). Salience network resting-state activity: Prediction of frontotemporal dementia progression. JAMA Neurology, 70(10), 12491253. doi:10.1001/jamaneurol.2013.3258
de Haan, W., Pijnenburg, Y.A., Strijers, R.L., van der Made, Y., van der Flier, W.M., Scheltens, P., & Stam, C.J. (2009). Functional neural network analysis in frontotemporal dementia and Alzheimer’s disease using EEG and graph theory. BMC Neuroscience, 10, 101, doi:10.1186/1471-2202-10-101
Decety, J. (2011). The neuroevolution of empathy. Annals of the New York Academy of Sciences, 1231, 3545. doi:10.1111/j.1749-6632.2011.06027.x
Eslinger, P.J., Moore, P., Anderson, C., & Grossman, M. (2011). Social cognition, executive functioning, and neuroimaging correlates of empathic deficits in frontotemporal dementia. The Journal of Neuropsychiatry and Clinical Neurosciences, 23(1), 7482. doi:10.1176/appi.neuropsych.23.1.74
Farb, N.A., Grady, C.L., Strother, S., Tang-Wai, D.F., Masellis, M., Black, S., & Chow, T.W. (2013). Abnormal network connectivity in frontotemporal dementia: Evidence for prefrontal isolation. Cortex, 49(7), 18561873. doi:10.1016/j.cortex.2012.09.008
Filippi, M., Agosta, F., Scola, E., Canu, E., Magnani, G., Marcone, A., & Falini, A. (2013). Functional network connectivity in the behavioral variant of frontotemporal dementia. Cortex, 49(9), 23892401. doi:10.1016/j.cortex.2012.09.017
Freeman, L.C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 3541.
Garcia-Cordero, I., Sedeño, L., Fraiman, D., Craiem, D., de la Fuente, L.A., Salamone, P., & Ibanez, A. (2015). Stroke and neurodegeneration induce different connectivity aberrations in the insula. Stroke, doi:10.1161/STROKEAHA.115.009598
Gleichgerrcht, E., Roca, M., Manes, F., & Torralva, T. (2011). Comparing the clinical usefulness of the Institute of Cognitive Neurology (INECO) Frontal Screening (IFS) and the Frontal Assessment Battery (FAB) in frontotemporal dementia. Journal of Clinical and Experimental Neuropsychology, 33(9), 9971004. doi:10.1080/13803395.2011.589375
Goch, C.J., Stieltjes, B., Henze, R., Hering, J., Poustka, L., Meinzer, H.P., & Maier-Hein, K.H. (2014). Quantification of changes in language-related brain areas in autism spectrum disorders using large-scale network analysis. International Journal of Computer Assisted Radiology and Surgery, 9(3), 357365. doi:10.1007/s11548-014-0977-0
Grefkes, C., & Fink, G.R. (2014). Connectivity-based approaches in stroke and recovery of function. Lancet Neurology, 13(2), 206216. doi:10.1016/S1474-4422(13)70264-3
He, Y., Chen, Z., & Evans, A. (2008). Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. The Journal of Neuroscience, 28(18), 47564766. doi:10.1523/JNEUROSCI.0141-08.2008
Ibanez, A., & Manes, F. (2012). Contextual social cognition and the behavioral variant of frontotemporal dementia. Neurology, 78(17), 13541362.
Kalcher, K., Huf, W., Boubela, R.N., Filzmoser, P., Pezawas, L., Biswal, B., & Windischberger, C. (2012). Fully exploratory network independent component analysis of the 1000 functional connectomes database. Frontiers in Human Neuroscience, 6, 301. doi:10.3389/fnhum.2012.00301
Kennedy, D.P., & Adolphs, R. (2012). The social brain in psychiatric and neurological disorders. Trends in Cognitive Sciences, 16(11), 559572. doi:10.1016/j.tics.2012.09.006
Kipps, C.M., Nestor, P.J., Acosta-Cabronero, J., Arnold, R., & Hodges, J.R. (2009). Understanding social dysfunction in the behavioural variant of frontotemporal dementia: The role of emotion and sarcasm processing. Brain, 132(3), 592603. doi:10.1093/brain/awn314
Kril, J.J., Macdonald, V., Patel, S., Png, F., & Halliday, G.M. (2005). Distribution of brain atrophy in behavioral variant frontotemporal dementia. Journal of the Neurological Sciences, 232(1-2), 8390. doi:10.1016/j.jns.2005.02.003
Kumfor, F., Irish, M., Leyton, C., Miller, L., Lah, S., Devenney, E., & Piguet, O. (2014). Tracking the progression of social cognition in neurodegenerative disorders. Journal of Neurology, Neurosurgery, and Psychiatry, 85(10), 10761083. doi:10.1136/jnnp-2013-307098
Lambon Ralph, M.A., Cipolotti, L., Manes, F., & Patterson, K. (2010). Taking both sides: Do unilateral anterior temporal lobe lesions disrupt semantic memory? Brain, 133(11), 32433255.
Li, Y., Qin, Y., Chen, X., & Li, W. (2013). Exploring the functional brain network of Alzheimer’s disease: Based on the computational experiment. PLoS One, 8(9), e73186. doi:10.1371/journal.pone.0073186
Liu, Z., Zhang, Y., Yan, H., Bai, L., Dai, R., Wei, W., & Tian, J. (2012). Altered topological patterns of brain networks in mild cognitive impairment and Alzheimer’s disease: A resting-state fMRI study. Psychiatry Research, 202(2), 118125. doi:10.1016/j.pscychresns.2012.03.002
MacQueen, J.B. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 281297.
Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177190. doi:10.1016/j.jneumeth.2007.03.024
McDonald, S., Flanagan, S., Rollins, J., & Kinch, J. (2003). TASIT: A new clinical tool for assessing social perception after traumatic brain injury. The Journal of Head Trauma Rehabilitation, 18(3), 219238.
Mesulam, M.M. (1986). Frontal cortex and behavior. Annals of Neurology, 19(4), 320325. doi:10.1002/ana.410190403
Nestor, P.J. (2013). Degenerator tau/TDP-43: Rise of the machines. Journal of Neurology, Neurosurgery, and Psychiatry, 84(9), 945. doi:10.1136/jnnp-2012-304681
Nichols, T.E., & Holmes, A.P. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping, 15(1), 125.
Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 156869. doi:10.1155/2011/156869
Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest path. Social Networks, 32(3), 245251.
Pievani, M., de Haan, W., Wu, T., Seeley, W.W., & Frisoni, G.B. (2011). Functional network disruption in the degenerative dementias. Lancet Neurology, 10(9), 829843. doi:10.1016/S1474-4422(11)70158-2
Piguet, O., Hornberger, M., Mioshi, E., & Hodges, J.R. (2011). Behavioural-variant frontotemporal dementia: Diagnosis, clinical staging, and management. Lancet Neurology, 10(2), 162172. doi:10.1016/S1474-4422(10)70299-4
Possin, K.L., Feigenbaum, D., Rankin, K.P., Smith, G.E., Boxer, A.L., Wood, K., & Kramer, J.H. (2013). Dissociable executive functions in behavioral variant frontotemporal and Alzheimer dementias. Neurology, 80(24), 21802185. doi:10.1212/WNL.0b013e318296e940
Rankin, K.P., Kramer, J.H., & Miller, B.L. (2005). Patterns of cognitive and emotional empathy in frontotemporal lobar degeneration. Cognitive and Behavioral Neurology, 18(1), 2836.
Rascovsky, K., Hodges, J.R., Knopman, D., Mendez, M.F., Kramer, J.H., Neuhaus, J., & Miller, B.L. (2011). Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain, 134(9), 24562477. doi:10.1093/brain/awr179
Rascovsky, K., Salmon, D.P., Lipton, A.M., Leverenz, J.B., DeCarli, C., Jagust, W.J., & Galasko, D. (2005). Rate of progression differs in frontotemporal dementia and Alzheimer disease. Neurology, 65(3), 397403. doi:10.1212/01.wnl.0000171343.43314.6e
Rosen, H.J., Gorno-Tempini, M.L., Goldman, W.P., Perry, R.J., Schuff, N., Weiner, M., & Miller, B.L. (2002). Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology, 58(2), 198208.
Rytty, R., Nikkinen, J., Paavola, L., Abou Elseoud, A., Moilanen, V., Visuri, A., & Remes, A.M. (2013). GroupICA dual regression analysis of resting state networks in a behavioral variant of frontotemporal dementia. Frontiers in Human Neuroscience, 7, 461. doi:10.3389/fnhum.2013.00461
Sajjadi, S.A., Acosta-Cabronero, J., Patterson, K., Diaz-de-Grenu, L.Z., Williams, G.B., & Nestor, P.J. (2013). Diffusion tensor magnetic resonance imaging for single subject diagnosis in neurodegenerative diseases. Brain, 136(7), 22532261. doi:10.1093/brain/awt118
Sanz-Arigita, E.J., Schoonheim, M.M., Damoiseaux, J.S., Rombouts, S.A., Maris, E., Barkhof, F., & Stam, C.J. (2010). Loss of ‘small-world’ networks in Alzheimer’s disease: Graph analysis of FMRI resting-state functional connectivity. PLoS One, 5(11), e13788. doi:10.1371/journal.pone.0013788
Sedeño, L., Couto, B., Melloni, M., Canales-Johnson, A., Yoris, A., Baez, S., & Ibanez, A. (2014). How do you feel when you can’t feel your body? Interoception, functional connectivity and emotional processing in depersonalization-derealization disorder. PLoS One, 9(6), e98769. doi:10.1371/journal.pone.0098769
Seeley, W.W., Crawford, R., Rascovsky, K., Kramer, J.H., Weiner, M., Miller, B.L., & Gorno-Tempini, M.L. (2008). Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. Archives of Neurology, 65(2), 249255. doi:10.1001/archneurol.2007.38
Seo, E.H., Lee, D.Y., Lee, J.M., Park, J.S., Sohn, B.K., Lee, D.S., & Woo, J.I. (2013). Whole-brain functional networks in cognitively normal, mild cognitive impairment, and Alzheimer’s disease. PLoS One, 8(1), e53922. doi:10.1371/journal.pone.0053922
Singer, T. (2006). The neuronal basis and ontogeny of empathy and mind reading: Review of literature and implications for future research. Neuroscience and Biobehavioral Reviews, 30(6), 855863. doi:10.1016/j.neubiorev.2006.06.011
Singer, T., & Lamm, C. (2009). The social neuroscience of empathy. Annals of the New York Academy of Sciences, 1156, 8196. doi:10.1111/j.1749-6632.2009.04418.x
Smith, S.M., Fox, P.T., Miller, K.L., Glahn, D.C., Fox, P.M., Mackay, C.E., & Beckmann, C.F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United Sates of America, 106(31), 1304013045. doi:10.1073/pnas.0905267106
Sporns, O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nature Neuroscience, 17(5), 652660. doi:10.1038/nn.3690
Sporns, O., & Zwi, J.D. (2004). The small world of the cerebral cortex. Neuroinformatics, 2(2), 145162. doi:10.1385/NI:2:2:145
Stanley, D.A., & Adolphs, R. (2013). Toward a neural basis for social behavior. Neuron, 80(3), 816826. doi:10.1016/j.neuron.2013.10.038
Supekar, K., & Menon, V. (2012). Developmental maturation of dynamic causal control signals in higher-order cognition: A neurocognitive network model. PLoS Computational Biology, 8(2), e1002374. doi:10.1371/journal.pcbi.1002374
Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M.D. (2008). Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Computational Biology, 4(6), e1000100. doi:10.1371/journal.pcbi.1000100
Tian, L., Wang, J., Yan, C., & He, Y. (2011). Hemisphere- and gender-related differences in small-world brain networks: A resting-state functional MRI study. Neuroimage, 54(1), 191202. doi:10.1016/j.neuroimage.2010.07.066
Torralva, T., Roca, M., Gleichgerrcht, E., Lopez, P., & Manes, F. (2009). INECO Frontal Screening (IFS): A brief, sensitive, and specific tool to assess executive functions in dementia. Journal of the International Neuropsychological Society, 15(5), 777786. doi:10.1017/S1355617709990415
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273289. doi:10.1006/nimg.2001.0978
van den Heuvel, M., Mandl, R., & Hulshoff Pol, H. (2008). Normalized cut group clustering of resting-state FMRI data. PLoS One, 3(4), e2001. doi:10.1371/journal.pone.0002001
Van Dijk, K.R., Sabuncu, M.R., & Buckner, R.L. (2012). The influence of head motion on intrinsic functional connectivity MRI. Neuroimage, 59(1), 431438. doi:10.1016/j.neuroimage.2011.07.044
Whitwell, J.L., Josephs, K.A., Avula, R., Tosakulwong, N., Weigand, S.D., Senjem, M.L., & Jack, C.R. Jr (2011). Altered functional connectivity in asymptomatic MAPT subjects: A comparison to bvFTD. Neurology, 77(9), 866874. doi:10.1212/WNL.0b013e31822c61f2
Whitwell, J.L., Przybelski, S.A., Weigand, S.D., Ivnik, R.J., Vemuri, P., Gunter, J.L., & Josephs, K.A. (2009). Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: A cluster analysis study. Brain, 132(11), 29322946. doi:10.1093/brain/awp232
Xiang, J., Guo, H., Cao, R., Liang, H., & Chen, J. (2013). An abnormal resting-state functional brain network indicates progression towards Alzheimer’s disease. Neural Regeneration Research, 8(30), 27892799. doi:10.3969/j.issn.1673-5374.2013.30.001
Yao, Z., Zhang, Y., Lin, L., Zhou, Y., Xu, C., Jiang, T., & Alzheimer’s Disease Neuroimaging, I. (2010). Abnormal cortical networks in mild cognitive impairment and Alzheimer’s disease. PLoS Computational Biology, 6(11), e1001006. doi:10.1371/journal.pcbi.1001006
Zhou, J., Greicius, M.D., Gennatas, E.D., Growdon, M.E., Jang, J.Y., Rabinovici, G.D., & Seeley, W.W. (2010). Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain, 133(5), 13521367. doi:10.1093/brain/awq075
Zuo, X.N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F.X., Sporns, O., & Milham, M.P. (2012). Network centrality in the human functional connectome. Cerebral Cortex, 22(8), 18621875. doi:10.1093/cercor/bhr269


Type Description Title
Supplementary materials

Sedeño supplementary material
Sedeño supplementary material 1

 Word (1.1 MB)
1.1 MB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed