Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T22:43:11.907Z Has data issue: false hasContentIssue false

Development and Validation of a Cognitive Reserve Index in HIV

Published online by Cambridge University Press:  04 June 2021

Navaldeep Kaur
Affiliation:
School of Physical and Occupational Therapy, McGill University, Montreal, Canada Division of Clinical Epidemiology, McGill University, Montreal, Canada
Lesley K. Fellows
Affiliation:
Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
Marie-Josée Brouillette
Affiliation:
Department of Psychiatry, McGill University, Montreal, Canada
Nancy Mayo*
Affiliation:
School of Physical and Occupational Therapy, McGill University, Montreal, Canada Division of Clinical Epidemiology, McGill University, Montreal, Canada
*
Correspondence and reprint requests to: Nancy Mayo, Center for Outcomes Research and Evaluation, Research Institute, McGill University Health Centre, 5252 de Maisonneuve, Montreal, Quebec, H4A 3S5, Canada. Email: nancy.mayo@mcgill.ca

Abstract

Objectives:

In the neuroHIV literature, cognitive reserve has most often been operationalized using education, occupation, and IQ. The effects of other cognitively stimulating activities that might be more amenable to interventions have been little studied. The purpose of this study was to develop an index of cognitive reserve in people with HIV, combining multiple indicators of cognitively stimulating lifetime experiences into a single value.

Methods:

The data set was obtained from a Canadian longitudinal study (N = 856). Potential indicators of cognitive reserve captured at the study entry included education, occupation, engagement in six cognitively stimulating activities, number of languages spoken, and social resources. Cognitive performance was measured using a computerized test battery. A cognitive reserve index was formulated using logistic regression weights. For the evidence on concurrent and predictive validity of the index, the measures of cognition and self-reported everyday functioning were each regressed on the index scores at study entry and at the last follow-up [mean duration: 25.9 months (SD 7.2)], respectively. Corresponding regression coefficients and 95% confidence intervals (CIs) were computed.

Results:

Professional sports [odds ratio (OR): 2.9; 95% CI 0.59–14.7], visual and performance arts (any level of engagement), professional/amateur music, complex video gaming and competitive games, and travel outside North America were associated with higher cognitive functioning. The effects of cognitive reserve on the outcomes at the last follow-up visit were closely similar to those at study entry.

Conclusion:

This work contributes evidence toward the relative benefit of engaging in specific cognitively stimulating life experiences in HIV.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arbogast, P. G., & Ray, W. A. (2011). Performance of disease risk scores, propensity scores, and traditional multivariable outcome regression in the presence of multiple confounders. American Journal of Epidemiology, 174(5), 613620. doi: 10.1093/aje/kwr143 CrossRefGoogle ScholarPubMed
Becker, B. W., Thames, A. D., Castellon, S. A., & Hinkin, C. H. (2011). Longitudinal change in cognitive function and medication adherence in HIV-infected adults. AIDS and Behavior, 15(8), 18881894.CrossRefGoogle ScholarPubMed
Biasutti, M., & Mangiacotti, A. (2018). Assessing a cognitive music training for older participants: a randomised controlled trial. International Journal of Geriatric Psychiatry, 33(2), 271278. doi: 10.1002/gps.4721 CrossRefGoogle ScholarPubMed
Biondi-Zoccai, G., Romagnoli, E., Agostoni, P., Capodanno, D., Castagno, D., D’Ascenzo, F., … Modena, M. G. (2011). Are propensity scores really superior to standard multivariable analysis? Contemporary Clinical Trials, 32(5), 731740. doi: 10.1016/j.cct.2011.05.006 CrossRefGoogle ScholarPubMed
Blackstone, K., Moore, D. J., Heaton, R. K., Franklin, D. R. Jr, Woods, S. P., Clifford, D. B., … CNS HIV Antiretroviral Therapy Effects Research (CHARTER) Group. (2012). Diagnosing symptomatic HIV-associated neurocognitive disorders: self-report versus performance-based assessment of everyday functioning. Journal of the International Neuropsychological Society: JINS, 18(1), 7988. doi: 10.1017/S135561771100141X CrossRefGoogle ScholarPubMed
Bosch, B., Bartrés-Faz, D., Rami, L., Arenaza-Urquijo, E. M., Fernández-Espejo, D., Junqué, C., … Molinuevo, J. L. (2010). Cognitive reserve modulates task-induced activations and deactivations in healthy elders, amnestic mild cognitive impairment and mild Alzheimer’s disease. Cortex, 46(4), 451461. doi: 10.1016/j.cortex.2009.05.006 CrossRefGoogle ScholarPubMed
Brouillette, M. J., Fellows, L. K., Finch, L., Thomas, R., & Mayo, N. E. (2019). Properties of a brief assessment tool for longitudinal measurement of cognition in people living with HIV. PLoS ONE, 14(3), e0213908. doi: 10.1371/journal.pone.0213908 CrossRefGoogle ScholarPubMed
Brouillette, M. J., Fellows, L. K., Palladini, L., Finch, L., Thomas, R., & Mayo, N. E. (2015). Quantifying cognition at the bedside: a novel approach combining cognitive symptoms and signs in HIV. BMC Neurology, 15, 224. doi: 10.1186/s12883-015-0483-1 CrossRefGoogle ScholarPubMed
Brouillette, M. J., Yuen, T., Fellows, L. K., Cysique, L. A., Heaton, R. K., & Mayo, N. E. (2016). Identifying Neurocognitive Decline at 36 Months among HIV-Positive Participants in the CHARTER Cohort Using Group-Based Trajectory Analysis. PLoS ONE, 11(5), e0155766. doi: 10.1371/journal.pone.0155766 CrossRefGoogle ScholarPubMed
Cadar, D., Lassale, C., Davies, H., Llewellyn, D. J., Batty, G. D., & Steptoe, A. (2018). Individual and Area-Based Socioeconomic Factors Associated With Dementia Incidence in England: Evidence From a 12-Year Follow-up in the English Longitudinal Study of Ageing. JAMA Psychiatry, 75(7), 723732. doi: 10.1001/jamapsychiatry.2018.1012 CrossRefGoogle ScholarPubMed
Calvo, N., García, A. M., Manoiloff, L., & Ibáńez, A. (2015). Bilingualism and cognitive reserve: a critical overview and a plea for methodological innovations. Frontiers in aging neuroscience, 7, 249. doi: 10.3389/fnagi.2015.00249 Google Scholar
Cheng, S.-T. (2016). Cognitive reserve and the prevention of dementia: the role of physical and cognitive activities. Current Psychiatry Reports, 18(9), 112. doi: 10.1007/s11920-016-0721-2 CrossRefGoogle ScholarPubMed
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers. Computers, Environment and Urban Systems, 14(1), 7171. doi: 10.1016/0198-9715(90)90050-4 Google Scholar
D’Agostino, R. B., Vasan, R. S., Pencina, M. J., Wolf, P. A., Cobain, M., Massaro, J. M., & Kannel, W. B. (2008). General cardiovascular risk profile for use in primary care: the framingham heart study. Circulation, 117(6), 743.CrossRefGoogle ScholarPubMed
Deyo, R. A., Cherkin, D. C., & Ciol, M. A. (1992). Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. Journal of Clinical Epidemiology, 45(6), 613619. doi: 10.1016/0895-4356(92)90133-8 CrossRefGoogle ScholarPubMed
Edwards, J. R., & Bagozzi, R. P. (2000). On the nature and direction of relationships between constructs and measures. Psychological Methods, 5, 155174.CrossRefGoogle ScholarPubMed
Fillenbaum, G. G. (1990). Review of multidimensional functional assessment of older adults: the duke older americans resources and services procedures. Contemporary Psychology: A Journal of Reviews, 35(6), 623. doi: 10.1037/028781 Google Scholar
Foley, J. M., Gooding, A. L., Thames, A. D., Ettenhofer, M. L., Kim, M. S., Castellon, S. A., … Hinkin, C. H. (2013). Visuospatial and attentional abilities predict driving simulator performance among older HIV-infected adults. American journal of Alzheimer’s Disease and other Dementias, 28(2), 185194. doi: 10.1177/1533317512473192 CrossRefGoogle ScholarPubMed
Gorman, A. A., Foley, J. M., Ettenhofer, M. L., Hinkin, C. H., & van Gorp, W. G. (2009). Functional consequences of HIV-associated neuropsychological impairment. Neuropsychology Review, 19(2), 186203. doi: 10.1007/s11065-009-9095-0 CrossRefGoogle ScholarPubMed
Harrell, F. (1996). Regression coefficients and scoring rules. Journal of Clinical Epidemiology, 49(7), 819. doi: 10.1016/0895-4356(95)00068-2 CrossRefGoogle ScholarPubMed
Heaton, R. K., Clifford, D. B., Franklin, D. R. Jr, Woods, S. P., Ake, C., Vaida, F., … Group, C. (2010). HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology, 75(23), 20872096. doi: 10.1212/WNL.0b013e318200d727 CrossRefGoogle ScholarPubMed
Helzner, E. P., Scarmeas, N., Cosentino, S., Portet, F., & Stern, Y. (2007). Leisure activity and cognitive decline in incident Alzheimer disease. Archives of neurology, 64(12), 17491754.CrossRefGoogle ScholarPubMed
Isobel, E. M. E., David, J. L., Fiona, E. M., Robert, T. W., Carol, B., & Linda, C. (2018). Social isolation, cognitive reserve, and cognition in healthy older people. PLoS ONE, 13(8). doi: 10.1371/journal.pone.0201008 CrossRefGoogle Scholar
Jefferson, A. L., Gibbons, L. E., Rentz, D. M., Carvalho, J. O., Manly, J., Bennett, D. A., & Jones, R. N. (2011). A life course model of cognitive activities, socioeconomic status, education, reading ability, and cognition life course model. Journal of the American Geriatrics Society, 59(8), 14031411. doi: 10.1111/j.1532-5415.2011.03499.x CrossRefGoogle ScholarPubMed
Jones, R. N., Manly, J., Glymour, M. M., Rentz, D. M., Jefferson, A. L., & Stern, Y. (2011). Conceptual and measurement challenges in research on cognitive reserve. Journal of the International Neuropsychological Society: JINS, 17(4), 593601.CrossRefGoogle ScholarPubMed
Kaur, N., Dendukuri, N., Fellows, L. K., Brouillette, M. J., & Mayo, N. (2019). Association between cognitive reserve and cognitive performance in people with HIV: a systematic review and meta-analysis. AIDS Care, 1–11. doi: 10.1080/09540121.2019.1612017 CrossRefGoogle Scholar
Koski, L., Brouillette, M. J., Lalonde, R., Hello, B., Wong, E., Tsuchida, A., & Fellows, L. K. (2011). Computerized testing augments pencil-and-paper tasks in measuring HIV-associated mild cognitive impairment* Measuring cognition in HIV-infected individuals. HIV Medicine, 12(8), 472480. doi: 10.1111/j.1468-1293.2010.00910.x CrossRefGoogle Scholar
Leon, I., Garcia-Garcia, J., & Roldan-Tapia, L. (2014). Estimating cognitive reserve in healthy adults using the Cognitive Reserve Scale. PLoS ONE, 9(7), e102632.CrossRefGoogle ScholarPubMed
Mayo, N., Brouillette, M. J., Fellows, L. K., & Investigators, P. B. H. N. (2016). Understanding and optimizing brain health in HIV now: protocol for a longitudinal cohort study with multiple randomized controlled trials. BMC Neurology, 16(1). doi: 10.1186/s12883-016-0527-1 CrossRefGoogle Scholar
Mayo, N. E., Brouillette, M. J., Scott, S. C., Harris, M., Smaill, F., Smith, G., … Fellows, L. K. (2020). Relationships between cognition, function, and quality of life among HIV+ Canadian men. Quality of Life Research, 29(1), 3755. doi: 10.1007/s11136-019-02291-w CrossRefGoogle ScholarPubMed
Mayo, N. E., Brouillette, M.-J., & Fellows, L. K. (2018). Estimates of Prevalence of Cognitive Impairment From Research Studies Can Be Affected by Selection Bias. JAIDS Journal of Acquired Immune Deficiency Syndromes, 78(2), e7e8. doi: 10.1097/qai.0000000000001668 CrossRefGoogle ScholarPubMed
Mehta, H. B., Mehta, V., Girman, C. J., Adhikari, D., & Johnson, M. L. (2016). Regression coefficient-based scoring system should be used to assign weights to the risk index. Journal of Clinical Epidemiology, 79, 2228. doi: 10.1016/j.jclinepi.2016.03.031 CrossRefGoogle ScholarPubMed
Milanini, B., Ciccarelli, N., Fabbiani, M., Limiti, S., Grima, P., Rossetti, B., … Di Giambenedetto, S. (2016). Cognitive reserve and neuropsychological functioning in older HIV-infected people. Journal of NeuroVirology, 22(5), 575583. doi: 10.1007/s13365-016-0426-7 CrossRefGoogle ScholarPubMed
Nobel, L., Mayo, N. E., Hanley, J., Nadeau, L., & Daskalopoulou, S. S. (2014). MyRisk_Stroke Calculator: A Personalized Stroke Risk Assessment Tool for the General Population. Journal of Clinical Neurology (Seoul, Korea), 10(1), 19. doi: 10.3988/jcn.2014.10.1.1 CrossRefGoogle ScholarPubMed
Nucci, M., Mapelli, D., & Mondini, S. (2012). Cognitive Reserve Index questionnaire (CRIq): a new instrument for measuring cognitive reserve. Aging Clinical and Experimental Research, 24(3), 218226.Google ScholarPubMed
Park, D. C., Lodi-Smith, J., Drew, L., Haber, S., Hebrank, A., Bischof, G. N., & Aamodt, W. (2014). The impact of sustained engagement on cognitive function in older adults: the Synapse Project. Psychological Science, 25(1), 103112. doi: 10.1177/0956797613499592 CrossRefGoogle ScholarPubMed
Patton, D. E., Woods, S. P., Franklin, D. Jr, Cattie, J. E., Heaton, R. K., Collier, A. C., … Grant, I. (2012). Relationship of Medication Management Test-Revised (MMT-R) performance to neuropsychological functioning and antiretroviral adherence in adults with HIV. AIDS and Behavior, 16(8), 22862296. doi: 10.1007/s10461-012-0237-7 CrossRefGoogle ScholarPubMed
Price, R. W., & Brew, B. J. (1988). The AIDS dementia complex. The Journal of Infectious Diseases, 158(5), 10791083. doi: 10.1093/infdis/158.5.1079 CrossRefGoogle ScholarPubMed
Richards, M., & Deary, I. J. (2005). A life course approach to cognitive reserve: a model for cognitive aging and development? Annals of Neurology, 58(4), 617622.CrossRefGoogle Scholar
Sackett, D. L. (1979). Bias in analytic research. Journal of Chronic Diseases, 32(1–2), 5163.CrossRefGoogle ScholarPubMed
Sobral, M., & Paúl, C. (2013). Education, leisure activities and cognitive and functional ability of Alzheimer’s disease patients: A follow-up study. Dementia & Neuropsychologia, 7(2), 181.CrossRefGoogle ScholarPubMed
Sobral, M., Pestana, M. H., & Paúl, C. (2014). Measures of cognitive reserve in Alzheimer’s disease. Trends in Psychiatry and Psychotherapy, 36(3), 160168. doi: 10.1590/2237-6089-2014-0012 CrossRefGoogle ScholarPubMed
Sposito, G., Neri, A. L., & Yassuda, M. S. (2015). Cognitive performance and engagement in physical, social and intellectual activities in older adults: The FIBRA study. Dementia & Neuropsychologia, 9(3), 270278.10.1590/1980-57642015dn93000010CrossRefGoogle ScholarPubMed
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448460.CrossRefGoogle ScholarPubMed
Stern, Y., Arenaza-Urquijo, E., & Bartrés-Faz, D. (2018). Reserve, Resilience and Protective Factors PIA Empirical Definitions and Conceptual Frameworks Workgroup. Whitepaper: defining and investigating cognitive reserve, brain reserve, and brain maintenance [published online September 14, 2018]. Alzheimers Dement, 16(9), 13051311.CrossRefGoogle Scholar
Sullivan, M. J., Edgley, K., & Dehoux, E. (1990). A survey of multiple sclerosis: I. Perceived cognitive problems and compensatory strategy use. Canadian Journal of Rehabilitation, 4(2), 99105.Google Scholar
Tessier, A., Finch, L., Daskalopoulou, S. S., & Mayo, N. E. (2008). Validation of the Charlson Comorbidity Index for predicting functional outcome of stroke. Archives of physical medicine and rehabilitation, 89(7), 12761283.CrossRefGoogle ScholarPubMed
Tozzi, V., Balestra, P., Galgani, S., Murri, R., Bellagamba, R., Narciso, P., … Costa, M. (2003). Neurocognitive performance and quality of life in patients with HIV infection. AIDS research and human retroviruses, 19(8), 643652.10.1089/088922203322280856CrossRefGoogle ScholarPubMed
Turpin, R. S., Ozminkowski, R. J., Sharda, C. E., Collins, J. J., Berger, M. L., Billotti, G. M., … Nicholson, S. (2004). Reliability and validity of the Stanford Presenteeism Scale. Journal of Occupational and Environmental Medicine, 46(11), 11231133.CrossRefGoogle ScholarPubMed
Valenzuela, M. J., & Sachdev, P. (2007). Assessment of complex mental activity across the lifespan: development of the Lifetime of Experiences Questionnaire (LEQ). Psychological Medicine, 37(7), 10151025.CrossRefGoogle Scholar
Valian, V. (2015). Bilingualism and cognition. Bilingualism: Language and Cognition, 18(1), 324. doi: 10.1017/S1366728914000522 CrossRefGoogle Scholar
Vance, D. E., Cody, S. L., Nicholson, W. C., McManus, B., Stavrinos, D., Hoenig, A. K., & Fazeli, P. L. (2016). The neuroprotective influence of employment on cognitive reserve: Implications for an aging HIV population. Journal of HIV/AIDS & Social Services, 15(3), 284298.CrossRefGoogle Scholar
Vance, D. E., Cody, S. L., Yoo-Jeong, M., & Nicholson, W. C. (2015). The role of employment on neurocognitive reserve in adults with HIV: A review of the literature. Journal of the Association of Nurses in AIDS Care, 26(4), 316329.10.1016/j.jana.2015.04.003CrossRefGoogle ScholarPubMed
Vance, D. E., Wadley, V. G., Crowe, M. G., Raper, J. L., & Ball, K. K. (2011). Cognitive and everyday functioning in older and younger adults with and without HIV. Clinical Gerontologist, 34(5), 413426.CrossRefGoogle ScholarPubMed
Vivithanaporn, P., Heo, G., Gamble, J., Krentz, H., Hoke, A., Gill, M., & Power, C. (2010). Neurologic disease burden in treated HIV/AIDS predicts survival: a population-based study. Neurology, 75(13), 11501158.CrossRefGoogle ScholarPubMed
Wang, H.-X., Jin, Y., Hendrie, H. C., Liang, C., Yang, L., Cheng, Y., … Murrell, J. R. (2012). Late life leisure activities and risk of cognitive decline. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 68(2), 205213.CrossRefGoogle ScholarPubMed
Wolf, S. A., Kronenberg, G., Lehmann, K., Blankenship, A., Overall, R., Staufenbiel, M., & Kempermann, G. (2006). Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biol Psychiatry, 60(12), 13141323. doi: 10.1016/j.biopsych.2006.04.004 CrossRefGoogle ScholarPubMed
Supplementary material: File

Kaur et al. supplementary material

Kaur et al. supplementary material

Download Kaur et al. supplementary material(File)
File 33.5 KB