Skip to main content
×
Home
    • Aa
    • Aa

Hierarchical cognitive and psychosocial predictors of amnestic mild cognitive impairment

  • S. DUKE HAN (a1), HIDEO SUZUKI (a2), AMY J. JAK (a3) (a4), YU-LING CHANG (a3), DAVID P. SALMON (a5) and MARK W. BONDI (a3) (a4)...
Abstract
Abstract

To identify neuropsychological and psychosocial factors predictive of amnestic Mild Cognitive Impairment (aMCI) among a group of 94 nondemented older adults, we employed a novel nonlinear multivariate classification statistical method called Optimal Data Analysis (ODA) in a dataset collected annually for 3 years. Performance on measures of memory and visuomotor processing speed or symptoms of depression in year 1 predicted aMCI status by year 2. Performance on a measure of learning at year 1 predicted aMCI status at year 3. No other measures significantly predicted incidence of aMCI at years 2 and 3. Results support the utility of multiple neuropsychological and psychosocial measures in the diagnosis of aMCI, and the present model may serve as a testable hypothesis for prospective investigations of the development of aMCI. (JINS, 2010, 16, 721–729.)

Copyright
Corresponding author
*Correspondence and reprint requests to: S. Duke Han, Ph.D., Department of Behavioral Sciences, Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL 60612-3833. E-mail: Duke_Han@rush.edu
References
Hide All
Agresti A. (2007). An introduction to categorical data analysis (2nd ed.). Hoboken, NJ: Wiley.
Albert M.S., Moss M.B., Tanzi R., & Jones K. (2001). Preclinical prediction of AD using neuropsychological tests. Journal of the International Neuropsychological Society, 7, 631–639.
Arnaiz E., & Almkvist O. (2003). Neuropsychological features of mild cognitive impairment and preclinical Alzheimer’s disease. Acta Neurologica Scandinavica, 179(Suppl.), 34–41.
Bäckman L., Jones S., Berger A.K., Laukka E.J., Small B.J. (2005). Cognitive impairment in preclinical Alzheimer’s disease: A meta-analysis. Neuropsychology, 19, 520–531.
Breiman L., Friedman J.H., Olshen R.A., & Stone C.J. (1984). Classification and regression trees. Belmont, CA: Wadsworth.
Bremner A.P., & Taplin R.H. (2002). Modified classification and regression tree splitting criteria for data with interactions. Australian and New Zealand Journal of Statistics, 44, 169–176.
Chen P., Ratcliff G., Belle S.H., Cauley J.A., DeKoskey S.T., & Ganguli M. (2001). Patterns of cognitive decline in presymptomatic Alzheimer disease: A prospective community study. Archives of General Psychiatry, 58, 853–858.
Clark L.A., & Pregibon D. (1992). Tree-based models. In Charmbers J.M. & Hastie T.J. (Eds.), Statistical models in S (pp. 377–419). Pacific Grove, CA: Wadsworth & Brooks/Cole.
Corder E.H., Saunders A.M., Strittmatter W.J., Schmechel D.E., Gaskell P.C., Small G.W, (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261, 921–923.
Das S.K., Bose P., Biswas A., Dutt A., Banerjee T.K., Hazra A.M., et al. . (2007). An epidemiologic study of mild cognitive impairment in Kolkata, India. Neurology, 68, 2019–2026.
Dubois B., Feldman H.H., Jacova C., DeKoskey S.T., Barberger-Gateau P., Cummings J., et al. . (2007). Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS–ADRDA criteria. Lancet, 6, 734–746.
Fox J. (2000). Multiple and generalized nonparametric regression. Quantitative Applications in the Social Sciences Series, No.131. Thousand Oaks, CA: Sage Publications.
Gauthier S., Reisberg B., Zaudig M., Petersen R.C., Ritchie K., Broich K., et al. . (2006). Mild cognitive impairment. Lancet, 367, 1262–1270.
Grober E., & Kawas C. (1997). Learning and retention in preclinical and early Alzheimer’s disease. Psychology and aging, 12(1), 183–8.
Jaccard J. (2001). Interaction effects in logistic regression. Quantitative Applications in the Social Sciences Series, No. 135. Thousand Oaks, CA: Sage Publications.
Jak A.J., Bondi M.W., Delano-Wood L., Wierenga C., Corey-Bloom J., Salmon D.P., & Delis D.C. (2009). Quantification of five neuropsychological approaches to defining mild cognitive impairment. American Journal of Geriatric Psychiatry, 17, 368–375.
Menard S. (1995). Applied logistic regression analysis. Thousand Oaks, CA: Sage Publications.
Morris J.C. (2005). Mild cognitive impairment and preclinical Alzheimer’s disease. Geriatrics, (Suppl.), 9–14
Panza F., D’Introno A., Colacicco A.M., Capurso C., Del Parigi A., Caselli R.J., et al. . (2005). Current epidemiology of mild cognitive impairment and other predementia syndromes. American Journal of Geriatric Psychiatry, 13, 633–644.
Peduzzi P., Concato J., Kemper E., Holford T.R., & Feinstein A.R. (1996). A simulation study of the number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology, 49, 1373–1379.
Petersen R.C., & Morris J.C. (2005). Mild cognitive impairment as a clinical entity and treatment target. Archives of Neurology, 62, 1160–1163.
Petersen R.C., Doody R., Kurz A. Mohs R.C., Morris J.C., Rabins P.V., et al. . (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58, 1985–1992.
Petersen R.C., Smith G.E., Waring S.C., Ivnik R.J., Tangalos E.G., & Kokmen E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56, 303–308.
Rabin L.A., Pare N., Saykin A.J., Brown M.J., Wishart H.A., Flashman L.A., & Santulli R.B. (2009). Differential memory test sensitivity for diagnosing amnestic mild cognitive impairment and predicting conversion to Alzheimer’s disease. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn, 16, 357–376.
Ramakers I.H.G.B., Visser P.J., Aalten P., Bekers O., Sleegers K., van Broeckhoven C.L., et al. . (2008). The association between APOE genotype and memory dysfunction in subjects with mild cognitive impairment is related to age and Alzheimer pathology. Dementia and Geriatric Cognitive Disorders, 26, 101–108.
Saunders A.M., Strittmatter W.J., & Schmechel D.E. (1993). Association of apolipoprotein E allele e4 with late-onset familial and sporadic Alzheimer’s disease. Neurology, 43, 1467–1472.
Saxton J., Snitz B.E., Lopez O.L., Ives D.G., Dunn L.O., Fitzpatrick A., et al. , for the GEM Study Investigators. (2009). Functional and cognitive criteria produce different rates of mild cognitive impairment and conversion to dementia. Journal of Neurology, Neurosurgery, & Psychiatry, 80, 737–743.
Soltysik R.C., & Yarnold P.R. (1993). ODA 1.0: Optimal data analysis for DOS. Chicago: Optimal Data Analysis.
Sonquist J.A., & Morgan J.N. (1964). The detection of interaction effects. Monograph No. 35. Institute of Social Research, University of Michigan, Ann Arbor.
Stevens J.P. (2002). Applied multivariate statistics for the social sciences (4th ed.). Mahwah, NJ: Erlbaum.
Tabachnick B.G., & Fidell L.S. (1989). Using multivariate statistics (2nd ed.). New York: Harper & Row.
Teng E., Lu P.H., & Cummings J.L. (2007). Neuropsychiatric symptoms are associated with progression from mild cognitive impairment to Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 24, 253–259.
Twamley E., Ropacki S., Bondi M. (2006). Neuropsychological and neuroimaging changes in preclinical Alzheimer’s disease. J Int Neuropsychol Soc, 12, 707–735.
Yarnold P.R., & Soltysik R.C. (2005). Optimal Data Analysis: A guidebook with software for Windows. Washington, DC: American Psychological Association.
Yarnold P.R., Soltysik R.C., & Bennett C.L. (1997). Predicting in-hospital mortality of patients with AIDS-related pneumocystis carinii pneumonia: An example of hierarchically optimal classification tree analysis. Statistics in Medicine, 16, 1451–1463.
Yarnold P.R., Soltysik R.C., Lefevre F., & Martin G.J. (1998). Predicting in-hospital mortality of patients receiving cardiopulmonary resuscitation: Unit-weighted multi-ODA for binary data. Statistics in Medicine, 17, 2405–2414.
Yarnold P.R., Soltysik R.C., & Martin G.J. (1994). Heart rate variability and inducibility for sudden cardiac death: An example of optimal discriminant analysis. Statistics in Medicine, 13, 1015–1021.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the International Neuropsychological Society
  • ISSN: 1355-6177
  • EISSN: 1469-7661
  • URL: /core/journals/journal-of-the-international-neuropsychological-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 144 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.