Skip to main content
×
Home
    • Aa
    • Aa

Multivariate Pattern Analysis of fMRI in Breast Cancer Survivors and Healthy Women

  • S.M. Hadi Hosseini (a1) and Shelli R. Kesler (a1) (a2)
Abstract
Abstract

Advances in breast cancer (BC) treatments have resulted in significantly improved survival rates. However, BC chemotherapy is often associated with several side effects including cognitive dysfunction. We applied multivariate pattern analysis (MVPA) to functional magnetic resonance imaging (fMRI) to find a brain connectivity pattern that accurately and automatically distinguishes chemotherapy-treated (C+) from non-chemotherapy treated (C−) BC females and healthy female controls (HC). Twenty-seven C+, 29 C−, and 30 HC underwent fMRI during an executive-prefrontal task (Go/Nogo). The pattern of functional connectivity associated with this task discriminated with significant accuracy between C+ and HC groups (72%, p = .006) and between C+ and C− groups (71%, p = .012). However, the accuracy of discrimination between C− and HC was not significant (51%, p = .46). Compared with HC, behavioral performance of the C+ and C− groups during the task was intact. However, the C+ group demonstrated altered functional connectivity in the right frontoparietal and left supplementary motor area networks compared to HC, and in the right middle frontal and left superior frontal gyri networks, compared to C−. Our results provide further evidence that executive function performance may be preserved in some chemotherapy-treated BC survivors through recruitment of additional neural connections. (JINS, 2013, 19, 1–11)

Copyright
Corresponding author
Correspondence and reprint requests to: Shelli Kesler,401 Quarry Road, MC5795,Stanford, CA 94305-5795. E-mail: skesler@stanford.edu
References
Hide All
AhlesT.A. (2012). Brain vulnerability to chemotherapy toxicities. Psychooncology, doi:10.1002/pon.3196
AksuY., MillerD.J., KesidisG., BiglerD.C., YangQ.X. (2011). An MRI-derived definition of MCI-to-AD conversion for long-term, automatic prognosis of MCI patients. PLoS One, 6(10), e25074. doi:10.1371/journal.pone.0025074
AronA.R., BehrensT.E., SmithS., FrankM.J., PoldrackR.A. (2007). Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. Journal of Neuroscience, 27(14), 37433752. doi:27/14/3743 [pii]10.1523/JNEUROSCI.0519-07.2007
BaiF., WatsonD.R., ShiY., WangY., YueC., YuhuanTeng., ZhangZ. (2011). Specifically progressive deficits of brain functional marker in amnestic type mild cognitive impairment. PLoS One, 6(9), e24271. doi:10.1371/journal.pone.0024271
BehzadiY., RestomK., LiauJ., LiuT.T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage, 37(1), 90101.
BrunoJ., HosseiniS.M., KeslerS. (2012). Altered resting state functional brain network topology in chemotherapy-treated breast cancer survivors. Neurobiolology of Disease, 48(3), 329338. doi:10.1016/j.nbd.2012.07.009
CimprichB., Reuter-LorenzP., NelsonJ., ClarkP.M., TherrienB., NormolleD., WelshR.C. (2010). Prechemotherapy alterations in brain function in women with breast cancer. Journal of Clinical and Experimental Neuropsychology, 32(3), 324331. doi:913518343 [pii]10.1080/13803390903032537
CraddockR.C., HoltzheimerP.E.III, HuX.P., MaybergH.S. (2009). Disease state prediction from resting state functional connectivity. Magnetic Resonance in Medicine, 62(6), 16191628. doi:10.1002/mrm.22159
de RuiterM.B., RenemanL., BoogerdW., VeltmanD.J., CaanM., DouaudG., SchagenS.B. (2012). Late effects of high-dose adjuvant chemotherapy on white and gray matter in breast cancer survivors: Converging results from multimodal magnetic resonance imaging. Human Brain Mapping, 33(12), 29712983. doi:10.1002/hbm.21422
de RuiterM.B., RenemanL., BoogerdW., VeltmanD.J., van DamF.S., NederveenA.J., SchagenS.B. (2011). Cerebral hyporesponsiveness and cognitive impairment 10 years after chemotherapy for breast cancer. Human Brain Mapping, 32(8), 12061219. doi:10.1002/hbm.21102
DeprezS., AmantF., SmeetsA., PeetersR., LeemansA., Van HeckeW., SunaertS. (2012). Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. Journal of Clinical Oncology, 30(3), 274281. doi:10.1200/JCO.2011.36.8571
DeprezS., AmantF., YigitR., PorkeK., VerhoevenJ., Van den StockJ., SunaertS. (2011). Chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning in breast cancer patients. Human Brain Mapping, 32(3), 480493. doi:10.1002/hbm.21033
DeprezS., BillietT., SunaertS., LeemansA. (2013). Diffusion tensor MRI of chemotherapy-induced cognitive impairment in non-CNS cancer patients: A review. Brain Imaging and Behavior. doi:10.1007/s11682-012-9220-1
DuX., GoodwinJ.S. (2001). Patterns of use of chemotherapy for breast cancer in older women: Findings from Medicare claims data. Journal of Clinical Oncology, 19(5), 14551461.
EberlingJ.L., WuC., Tong-TurnbeaughR., JagustW.J. (2004). Estrogen- and tamoxifen-associated effects on brain structure and function. Neuroimage, 21(1), 364371. doi:S1053811903005457 [pii]
EichenbaumH. (2000). A cortical-hippocampal system for declarative memory. Nature Reviews Neuroscience, 1(1), 4150. doi:10.1038/35036213
FergusonR.J., McDonaldB.C., SaykinA.J., AhlesT.A. (2007). Brain structure and function differences in monozygotic twins: Possible effects of breast cancer chemotherapy. Journal of Clinical Oncology, 25(25), 38663870. doi:25/25/3866 [pii]10.1200/JCO.2007.10.8639
GloverG.H., LaiS. (1998). Self-navigated spiral fMRI: Interleaved versus single-shot. Magnetic Resonance Medicine, 39(3), 361368.
GreiciusM.D., FloresB.H., MenonV., GloverG.H., SolvasonH.B., ReissA.L., SchatzbergA.F. (2007). Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62(5), 429437. doi:10.1016/j.biopsych.2006.09.020
HaynesJ.-D., ReesG. (2006). Decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7(7), 523534. doi:10.1038/nrn1931
HoeftF., McCandlissB.D., BlackJ.M., GantmanA., ZakeraniN., HulmeC., GabrieliJ.D. (2011). Neural systems predicting long-term outcome in dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 108(1), 361366. doi:10.1073/pnas.1008950108
HosseiniS.M., KoovakkattuD., KeslerS.R. (2012). Altered small-world properties of gray matter networks in breast cancer. BMC Neurology, 12(1), 28. doi:10.1186/1471-2377-12-28
JanelsinsM.C., KohliS., MohileS.G., UsukiK., AhlesT.A., MorrowG.R. (2011). An update on cancer- and chemotherapy-related cognitive dysfunction: Current status. Seminars in Oncology, 38(3), 431438. doi:10.1053/j.seminoncol.2011.03.014
JonesD.T., MachuldaM.M., VemuriP., McDadeE.M., ZengG., SenjemM.L., JackC.R.Jr (2011). Age-related changes in the default mode network are more advanced in Alzheimer disease. Neurology, 77(16), 15241531. doi:10.1212/WNL.0b013e318233b33d
KamitaniY., TongF. (2005). Decoding the visual and subjective contents of the human brain. Nature Neuroscience, 8(5), 679685. doi:10.1038/nn1444
KeslerS., JanelsinsM., KoovakkattuD., PaleshO., MustianK., MorrowG., DhabharF.S. (2013). Reduced hippocampal volume and verbal memory performance associated with interleukin-6 and tumor necrosis factor-alpha levels in chemotherapy-treated breast cancer survivors. Brain Behavior and Immunity, 30(Suppl), S109S116. doi:10.1016/j.bbi.2012.05.017
KeslerS.R., BennettF.C., MahaffeyM.L., SpiegelD. (2009). Regional brain activation during verbal declarative memory in metastatic breast cancer. Clinical Cancer Research, 15(21), 66656673. doi:10.1158/1078-0432.CCR-09-1227
KeslerS.R., KentJ.S., O'HaraR. (2011). Prefrontal cortex and executive function impairments in primary breast cancer. Journal of the American Medical Association - Neurology, 68(11), 14471453. doi:10.1001/archneurol.2011.245
KeslerS.R., WefelJ.S., HosseiniS.M., CheungM., WatsonC.L., HoeftF. (2013). Default mode network connectivity distinguishes chemotherapy-treated breast cancer survivors from controls. Proceedings of the National Academy of Sciences of the United States of America, 110(28), 1160011605. doi:10.1073/pnas.1214551110
LehS.E., PetridesM., StrafellaA.P. (2010). The neural circuitry of executive functions in healthy subjects and Parkinson's disease. Neuropsychopharmacology, 35(1), 7085.
Mar FanH., Houédé-TchenN., ChemerynskyI., YiQ.-L., XuW., HarveyB. (2010). Menopausal symptoms in women undergoing chemotherapy-induced and natural menopause: A prospective controlled study. Annals of Oncology, 21(5), 983987.
MarzelliM.J., HoeftF., HongD.S., ReissA.L. (2011). Neuroanatomical spatial patterns in Turner syndrome. Neuroimage, 55(2), 439447. doi:10.1016/j.neuroimage.2010.12.054
McDonaldB.C., ConroyS.K., AhlesT.A., WestJ.D., SaykinA.J. (2010). Gray matter reduction associated with systemic chemotherapy for breast cancer: A prospective MRI study. Breast Cancer Research and Treatment, 123(3), 819828. doi:10.1007/s10549-010-1088-4
McDonaldB.C., ConroyS.K., AhlesT.A., WestJ.D., SaykinA.J. (2012). Alterations in brain activation during working memory processing associated with breast cancer and treatment: A prospective functional magnetic resonance imaging study. Journal of Clinical Oncology, 30(20), 25002508. doi:10.1200/JCO.2011.38.5674
MenonV., AdlemanN.E., WhiteC.D., GloverG.H., ReissA.L. (2001). Error-related brain activation during a Go/NoGo response inhibition task. Human Brain Mapping, 12(3), 131143. doi:10.1002/1097-0193(200103)12:3<131::AID-HBM1010>3.0.CO;2-C [pii]
MostofskyS.H., SchaferJ.G., AbramsM.T., GoldbergM.C., FlowerA.A., BoyceA., PekarJ.J. (2003). fMRI evidence that the neural basis of response inhibition is task-dependent. Brain Research, 17(2), 419430.
NobleW.S. (2006). What is a support vector machine? Nature Biotechnology, 24(12), 15651567. doi:10.1038/nbt1206-1565
O'DwyerL., LambertonF., BokdeA.L., EwersM., FaluyiY.O., TannerC., HampelH. (2012). Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment. PLoS One, 7(2), e32441. doi:10.1371/journal.pone.0032441
O'DwyerL., LambertonF., MaturaS., ScheibeM., MillerJ., RujescuD., HampelH. (2012). White matter differences between healthy young ApoE4 carriers and non-carriers identified with tractography and support vector machines. PLoS One, 7(4), e36024. doi:10.1371/journal.pone.0036024
O'TooleA.J., JiangF., AbdiH., PenardN., DunlopJ.P., ParentM.A. (2007). Theoretical, statistical, and practical perspectives on pattern-based classification approaches to the analysis of functional neuroimaging data. Journal of Cognitive Neuroscience, 19(11), 17351752. doi:10.1162/jocn.2007.19.11.1735
OrruG., Pettersson-YeoW., MarquandA.F., SartoriG., MechelliA. (2012). Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review. Neuroscience Biobehavioral Reviews, 36(4), 11401152. doi:10.1016/j.neubiorev.2012.01.004
PereiraF., MitchellT., BotvinickM. (2009). Machine learning classifiers and fMRI: A tutorial overview. Neuroimage, 45(1 Suppl), S199S209. doi:10.1016/j.neuroimage.2008.11.007
PhillipsK.M., JimH.S., SmallB.J., LarongaC., AndrykowskiM.A., JacobsenP.B. (2012). Cognitive functioning after cancer treatment: A 3-year longitudinal comparison of breast cancer survivors treated with chemotherapy or radiation and noncancer controls. Cancer, 118(7), 19251932. doi:10.1002/cncr.26432
PictonT.W., StussD.T., AlexanderM.P., ShalliceT., BinnsM.A., GillinghamS. (2007). Effects of focal frontal lesions on response inhibition. Cerebral Cortex, 17(4), 826838. doi:bhk031 [pii]10.1093/cercor/bhk031
Reuter-LorenzP.A., CimprichB. (2013). Cognitive function and breast cancer: Promise and potential insights from functional brain imaging. Breast Cancer Research and Treatment, 137(1), 3343. doi:10.1007/s10549-012-2266-3
RiceM.E., HarrisG.T. (2005). Comparing effect sizes in follow-up studies: ROC Area, Cohen's d, and r. Law and Human Behavior, 29(5), 615620. doi:10.1007/s10979-005-6832-7
RodinG., AhlesT.A. (2012). Accumulating evidence for the effect of chemotherapy on cognition. Journal of Clinical Oncology, 30(29), 35683569. doi:10.1200/JCO.2012.43.5776
ScherlingC., CollinsB., MackenzieJ., BielajewC., SmithA. (2011). Pre-chemotherapy differences in visuospatial working memory in breast cancer patients compared to controls: An FMRI study. Frontiers in Human Neuroscience, 5, 122. doi:10.3389/fnhum.2011.00122
ScherlingC., CollinsB., MackenzieJ., BielajewC., SmithA. (2012). Prechemotherapy differences in response inhibition in breast cancer patients compared to controls: A functional magnetic resonance imaging study. Journal of Clinical and Experimental Neuropsychology, 34(5), 543560. doi:10.1080/13803395.2012.666227
ShelineY.I., RaichleM.E., SnyderA.Z., MorrisJ.C., HeadD., WangS., MintunM.A. (2010). Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biological Psychiatry, 67(6), 584587. doi:10.1016/j.biopsych.2009.08.024
SilvermanD.H., DyC.J., CastellonS.A., LaiJ., PioB.S., AbrahamL., GanzP.A. (2007). Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5-10 years after chemotherapy. Breast Cancer Research and Treatment, 103(3), 303311. doi:10.1007/s10549-006-9380-z
SimmondsD.J., PekarJ.J., MostofskyS.H. (2008). Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia, 46(1), 224232. doi:S0028-3932(07)00268-0 [pii]10.1016/j.neuropsychologia.2007.07.015
StilleyC.S., BenderC.M., Dunbar-JacobJ., SereikaS., RyanC.M. (2010). The impact of cognitive function on medication management: Three studies. Health Psychology, 29(1), 5055. doi:10.1037/a0016940
SwickD., AshleyV., TurkenA.U. (2008). Left inferior frontal gyrus is critical for response inhibition. BMC Neuroscience, 9, 102. doi:10.1186/1471-2202-9-102
Tzourio-MazoyerN., LandeauB., PapathanassiouD., CrivelloF., EtardO., DelcroixN., JoliotM. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273289. doi:10.1006/nimg.2001.0978S1053811901909784 [pii]
VardyJ. (2009). Cognitive function in breast cancer survivors. Cancer Treatment Research, 151, 387419. doi:10.1007/978-0-387-75115-3_24
WefelJ.S., SaleebaA.K., BuzdarA.U., MeyersC.A. (2010). Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer, 116(14), 33483356. doi:10.1002/cncr.25098
WefelJ.S., SchagenS.B. (2012). Chemotherapy-related cognitive dysfunction. Current Neurological and Neuroscience Reports, 12(3), 267275. doi:10.1007/s11910-012-0264-9
Whitfield-GabrieliS., Nieto-CastanonA. (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125141. doi:10.1089/brain.2012.0073
ZengL.L., ShenH., LiuL., WangL., LiB., FangP., HuD. (2012). Identifying major depression using whole-brain functional connectivity: A multivariate pattern analysis. Brain, 135(Pt 5), 14981507. doi:10.1093/brain/aws059
ZhangD., ShenD. (2012). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. Neuroimage, 59(2), 895907. doi:10.1016/j.neuroimage.2011.09.069
ZhangD., WangY., ZhouL., YuanH., ShenD. (2011). Multimodal classification of Alzheimer's disease and mild cognitive impairment. Neuroimage, 55(3), 856867. doi:10.1016/j.neuroimage.2011.01.008
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the International Neuropsychological Society
  • ISSN: 1355-6177
  • EISSN: 1469-7661
  • URL: /core/journals/journal-of-the-international-neuropsychological-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 4
Total number of PDF views: 29 *
Loading metrics...

Abstract views

Total abstract views: 216 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd October 2017. This data will be updated every 24 hours.