Skip to main content
    • Aa
    • Aa

Planning Functional Grasps of Simple Tools Invokes the Hand-independent Praxis Representation Network: An fMRI Study

  • Łukasz Przybylski (a1) and Gregory Króliczak (a1)

Objectives: Neuropsychological and neuroimaging evidence indicates that tool use knowledge and abilities are represented in the praxis representation network (PRN) of the left cerebral hemisphere. We investigated whether PRN would also underlie the planning of function-appropriate grasps of tools, even though such an assumption is inconsistent with some neuropsychological evidence for independent representations of tool grasping and skilled tool use. Methods: Twenty right-handed participants were tested in an event-related functional magnetic resonance imaging (fMRI) study wherein they planned functionally appropriate grasps of tools versus grasps of non-tools matched for size and/or complexity, and later executed the pantomimed grasps of these objects. The dominant right, and non-dominant left hands were used in two different sessions counterbalanced across participants. The tool and non-tool stimuli were presented at three different orientations, some requiring uncomfortable hand rotations for effective grips, with the difficulty matched for both hands. Results: Planning functional grasps of tools (vs. non-tools) was associated with significant asymmetrical increases of activity in the temporo/occipital-parieto-frontal networks. The greater involvement of the left hemisphere PRN was particularly evident when hand movement kinematics (including wrist rotations) for grasping tools and non-tools were matched. The networks engaged in the task for the dominant and non-dominant hand were virtually identical. The differences in neural activity for the two object categories disappeared during grasp execution. Conclusions: The greater hand-independent engagement of the left-hemisphere praxis representation network for planning functional grasps reveals a genuine effect of an early affordance/function-based visual processing of tools. (JINS, 2017, 23, 108–120)

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Planning Functional Grasps of Simple Tools Invokes the Hand-independent Praxis Representation Network: An fMRI Study
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Planning Functional Grasps of Simple Tools Invokes the Hand-independent Praxis Representation Network: An fMRI Study
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Planning Functional Grasps of Simple Tools Invokes the Hand-independent Praxis Representation Network: An fMRI Study
      Available formats
Corresponding author
Correspondence and reprint requests to: Grzegorz Króliczak, Instytut Psychologii UAM, Ul. Szamarzewskiego 89, 60-568 Poznań, Poland. E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

C.F. Beckmann , M. Jenkinson , & S.M. Smith (2003). General multilevel linear modeling for group analysis in FMRI. Neuroimage, 20(2), 10521063. doi: 10.1016/S1053-8119(03)00435-X

C. Begliomini , C. Nelini , A. Caria , W. Grodd , & U. Castiello (2008). Cortical activations in humans grasp-related areas depend on hand used and handedness. PLoS One, 3(10), e3388.

A. Belardinelli , M. Barabas , M. Himmelbach , & M.V. Butz (2016). Anticipatory eye fixations reveal tool knowledge for tool interaction. Experimental Brain Reseach, 234, 24152431. doi: 10.1007/s00221-016-4646-0

S.P. Bidula , & G. Kroliczak (2015). Structural asymmetry of the insula is linked to the lateralization of gesture and language. European Journal of Neuroscience, 41(11), 14381447. doi: 10.1111/ejn.12888

F. Binkofski , & L.J. Buxbaum (2013). Two action systems in the human brain. Brain and Language, 127(2), 222229. doi: 10.1016/j.bandl.2012.07.007

F. Binkofski , C. Dohle , S. Posse , K.M. Stephan , H. Hefter , R.J. Seitz , & H.J. Freund (1998). Human anterior intraparietal area subserves prehension: A combined lesion and functional MRI activation study. Neurology, 50(5), 12531259. doi: 10.1212/WNL.50.5.1253

S. Bracci , C. Cavina-Pratesi , M. Ietswaart , A. Caramazza , & M.V. Peelen (2012). Closely overlapping responses to tools and hands in left lateral occipitotemporal cortex. Journal of Neurophysiology, 107(5), 14431456. doi: 10.1152/jn.00619.2011

M.L. Brandi , A. Wohlschlager , C. Sorg , & J. Hermsdorfer (2014). The neural correlates of planning and executing actual tool use. The Journal of Neuroscience, 34(39), 1318313194. doi: 10.1523/JNEUROSCI.0597-14.2014

L.J. Buxbaum , K.M. Kyle , K. Tang , & J.A. Detre (2006). Neural substrates of knowledge of hand postures for object grasping and functional object use: Evidence from fMRI. Brain Research, 1117(1), 175185. doi: 10.1016/j.brainres.2006.08.010

L.J. Buxbaum , A.D. Shapiro , & H.B. Coslett (2014). Critical brain regions for tool-related and imitative actions: A componential analysis. Brain, 137(Pt 7), 19711985. doi: 10.1093/brain/awu111

U. Castiello , & C. Begliomini (2008). The cortical control of visually guided grasping. Neuroscientist, 14(2), 157170.

L.L. Chao , J. Weisberg , & A. Martin (2002). Experience-dependent modulation of category-related cortical activity. Cereb Cortex, 12(5), 545551.

S.H. Creem-Regehr , & J.N. Lee (2005). Neural representations of graspable objects: Are tools special? Brain Research. Cognitive Brain Research, 22(3), 457469.

J.C. Culham , S.L. Danckert , J.F. DeSouza , J.S. Gati , R.S. Menon , & M.A. Goodale (2003). Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Experimental Brain Research, 153(2), 180189. doi: 10.1007/s00221-003-1591-5

A. Eklund , T.E. Nichols , & H. Knutsson (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences of the United States of America, 113(28), 79007905. doi: 10.1073/pnas.1602413113

R. Ellis , & M. Tucker (2000). Micro-affordance: The potentiation of components of action by seen objects. British Journal of Psychology, 91(Pt 4), 451471.

C.L. Elsinger , D.L. Harrington , & S.M. Rao (2006). From preparation to online control: Reappraisal of neural circuitry mediating internally generated and externally guided actions. Neuroimage, 31(3), 11771187.

S. Fabbri , K.M. Stubbs , R. Cusack , & J.C. Culham (2016). Disentangling Representations of Object and Grasp Properties in the Human Brain. The Journal of Neuroscience, 36(29), 76487662. doi: 10.1523/JNEUROSCI.0313-16.2016

B. Fischl (2012). FreeSurfer. Neuroimage, 62(2), 774781. doi: 10.1016/j.neuroimage.2012.01.021

S.H. Frey (2007). What puts the how in where? Tool use and the divided visual streams hypothesis. Cortex, 43(3), 368375.

S.H. Frey (2008). Tool use, communicative gesture and cerebral asymmetries in the modern human brain. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1499), 19511957. doi: 10.1098/rstb.2008.0008

S.H. Frey , D. Vinton , R. Norlund , & S.T. Grafton (2005). Cortical topography of human anterior intraparietal cortex active during visually guided grasping. Brain Research. Cognitive Brain Research, 23(2-3), 397405. doi: 10.1016/j.cogbrainres.2004.11.010

J.P. Gallivan , C. Cavina-Pratesi , & J.C. Culham (2009). Is that within reach? fMRI reveals that the human superior parieto-occipital cortex encodes objects reachable by the hand. Journal of Neuroscience, 29(14), 43814391. doi: 10.1523/JNEUROSCI.0377-09.2009

J.P. Gallivan , & J.C. Culham (2015). Neural coding within human brain areas involved in actions. Current Opinion in Neurobiology, 33, 141149. doi: 10.1016/j.conb.2015.03.012

G. Goldenberg , K. Hartmann , & I. Schlott (2003). Defective pantomime of object use in left brain damage: Apraxia or asymbolia? Neuropsychologia, 41(12), 15651573.

G. Goldenberg , & J. Spatt (2009). The neural basis of tool use. Brain, 132(Pt 6), 16451655. doi: 10.1093/brain/awp080

M.A. Goodale , C.L. Gonzalez , & G. Kroliczak (2008). Action rules: Why the visual control of reaching and grasping is not always influenced by perceptual illusions. Perception, 37(3), 355366. doi: 10.1068/p5876

M.A. Goodale , G. Kroliczak , & D.A. Westwood (2005). Dual routes to action: Contributions of the dorsal and ventral streams to adaptive behavior. Progress in Brain Research, 149, 269283. doi: 10.1016/S0079-6123(05)49019-6

K.Y. Haaland , & D.L. Harrington (1996). Hemispheric asymmetry of movement. Current Opinion in Neurobiology, 6(6), 796800.

K.Y. Haaland , D.L. Harrington , & R.T. Knight (2000). Neural representations of skilled movement. Brain, 123, 23062313. doi: 10.1093/brain/123.11.2306

G. Handjaras , G. Bernardi , F. Benuzzi , P.F. Nichelli , P. Pietrini , & E. Ricciardi (2015). A topographical organization for action representation in the human brain. Human Brain Mapping, 36(10), 38323844. doi: 10.1002/hbm.22881

D.L. Harrington , & K.Y. Haaland (1991). Hemispheric specialization for motor sequencing: Abnormalities in levels of programming. Neuropsychologia, 29(2), 147163.

D.L. Harrington , S.M. Rao , K.Y. Haaland , J.A. Bobholz , A.R. Mayer , J.R. Binderx , & R.W. Cox (2000). Specialized neural systems underlying representations of sequential movements. Journal of Cognitive Neuroscience, 12(1), 5677.

J. Hermsdorfer , G. Terlinden , M. Muhlau , G. Goldenberg , & A.M. Wohlschlager (2007). Neural representations of pantomimed and actual tool use: Evidence from an event-related fMRI study. Neuroimage, 36(Suppl 2), T109T118. doi: 10.1016/j.neuroimage.2007.03.037

R. Ishibashi , G. Pobric , S. Saito , & M.A. Lambon Ralph (2016). The neural network for tool-related cognition: An activation likelihood estimation meta-analysis of 70 neuroimaging contrasts. Cognitive Neuropsychology, 33(3-4), 241256. doi: 10.1080/02643294.2016.1188798

S. Jacobs , C. Danielmeier , & S.H. Frey (2010). Human anterior intraparietal and ventral premotor cortices support representations of grasping with the hand or a novel tool. Journal of Cognitive Neuroscience, 22(11), 25942608. doi: 10.1162/jocn.2009.21372

M. Jenkinson , C.F. Beckmann , T.E. Behrens , M.W. Woolrich , & S.M. Smith (2012). FSL. Neuroimage, 62(2), 782790. doi: 10.1016/j.neuroimage.2011.09.015

S.H. Johnson-Frey , R. Newman-Norlund , & S.T. Grafton (2005). A distributed left hemisphere network active during planning of everyday tool use skills. Cerebral Cortex, 15(6), 681695. doi: 10.1093/cercor/bhh169

D. Kimura , & Y. Archibald (1974). Motor functions of the left hemisphere. Brain, 97(2), 337350. doi: 10.1093/brain/97.1.337

D. Kourtis , & G. Vingerhoets (2015). Perceiving objects by their function: An EEG study on feature saliency and prehensile affordances. Biological Psychology, 110, 138147.

S. Kristensen , F.E. Garcea , B.Z. Mahon , & J. Almeida (2016). Temporal Frequency Tuning Reveals Interactions between the Dorsal and Ventral Visual Streams. Journal of Cognitive Neuroscience, 28(9), 12951302. doi: 10.1162/jocn_a_00969

G. Kroliczak , C. Cavina-Pratesi , D.A. Goodman , & J.C. Culham (2007). What does the brain do when you fake it? An FMRI study of pantomimed and real grasping. Journal of Neurophysiology, 97(3), 24102422. doi: 10.1152/jn.00778.2006

G. Kroliczak , & S.H. Frey (2009). A common network in the left cerebral hemisphere represents planning of tool use pantomimes and familiar intransitive gestures at the hand-independent level. Cerebral Cortex, 19(10), 23962410. doi: 10.1093/cercor/bhn261

G. Kroliczak , T.D. McAdam , D.J. Quinlan , & J.C. Culham (2008). The human dorsal stream adapts to real actions and 3D shape processing: A functional magnetic resonance imaging study. Journal of Neurophysiology, 100(5), 26272639. doi: 10.1152/jn.01376.2007

G. Kroliczak , B.J. Piper , & S.H. Frey (2016). Specialization of the left supramarginal gyrus for hand-independent praxis representation is not related to hand dominance. Neuropsychologia. doi: 10.1016/j.neuropsychologia.2016.03.023

G. Kroliczak , D.A. Westwood , & M.A. Goodale (2006). Differential effects of advance semantic cues on grasping, naming, and manual estimation. Experimental Brain Research, 175(1), 139152. doi: 10.1007/s00221-006-0524-5

A. Kubiak , & G. Kroliczak (2016). Left extrastriate body area is sensitive to the meaning of symbolic gesture: Evidence from fMRI repetition suppression. Scientific Reports, 6, 31064. doi: 10.1038/srep31064

Y. Li , J. Randerath , G. Goldenberg , & J. Hermsdorfer (2007). Grip forces isolated from knowledge about object properties following a left parietal lesion. Neuroscience Letters, 426(3), 187191. doi: 10.1016/j.neulet.2007.09.008

S.N. Macdonald , & J.C. Culham (2015). Do human brain areas involved in visuomotor actions show a preference for real tools over visually similar non-tools? Neuropsychologia, 77, 3541. doi: 10.1016/j.neuropsychologia.2015.08.004

V. Maki-Marttunen , M. Villarreal , & R.C. Leiguarda (2014). Lateralization of brain activity during motor planning of proximal and distal gestures. Behavioural Brain Research, 272, 226237. doi: 10.1016/j.bbr.2014.06.055

Z. Makoshi , G. Kroliczak , & P. van Donkelaar (2011). Human supplementary motor area contribution to predictive motor planning. Journal of Motor Behavior, 43(4), 303309. doi: 10.1080/00222895.2011.584085

M. Marangon , A. Kubiak , & G. Kroliczak (2016). Haptically guided grasping. fMRI shows right-hemisphere parietal stimulus encoding, and bilateral dorso-ventral parietal gradients of object- and action-related processing during grasp execution. Frontiers in Human Neuroscience, 9, 691. doi: 10.3389/fnhum.2015.00691

F.M. Miezin , L. Maccotta , J.M. Ollinger , S.E. Petersen , & R.L. Buckner (2000). Characterizing the hemodynamic response: Effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. Neuroimage, 11(6 Pt 1), 735759. doi: 10.1006/nimg.2000.0568

J.C. Mizelle , R.L. Kelly , & L.A. Wheaton (2013). Ventral encoding of functional affordances: A neural pathway for identifying errors in action. Brain and Cognition, 82(3), 274282. doi: 10.1016/j.bandc.2013.05.002

S. Monaco , G. Kroliczak , D.J. Quinlan , P. Fattori , C. Galletti , M.A. Goodale , & J.C. Culham (2010). Contribution of visual and proprioceptive information to the precision of reaching movements. Experimental Brain Research, 202(1), 1532. doi: 10.1007/s00221-009-2106-9

S. Monaco , A. Sedda , C. Cavina-Pratesi , & J.C. Culham (2015). Neural correlates of object size and object location during grasping actions. European Journal of Neuroscience, 41(4), 454465. doi: 10.1111/ejn.12786

T. Nichols , M. Brett , J. Andersson , T. Wager , & J.B. Poline (2005). Valid conjunction inference with the minimum statistic. Neuroimage, 25(3), 653660. doi: 10.1016/j.neuroimage.2004.12.005

R.C. Oldfield (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97113. doi: 10.1016/0028-3932(71)90067-4

R.R. Peeters , G. Rizzolatti , & G.A. Orban (2013). Functional properties of the left parietal tool use region. Neuroimage, 78, 8393. doi: 10.1016/j.neuroimage.2013.04.023

A. Pellicano , C. Iani , A.M. Borghi , S. Rubichi , & R. Nicoletti (2010). Simon-like and functional affordance effects with tools: The effects of object perceptual discrimination and object action state. Quarterly Journal of Experimental Psychology (Hove), 63(11), 21902201. doi: 10.1080/17470218.2010.486903

M.E. Raichle , A.M. MacLeod , A.Z. Snyder , W.J. Powers , D.A. Gusnard , & G.L. Shulman (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676682.

J. Randerath , G. Goldenberg , W. Spijkers , Y. Li , & J. Hermsdorfer (2010). Different left brain regions are essential for grasping a tool compared with its subsequent use. Neuroimage, 53(1), 171180. doi: 10.1016/j.neuroimage.2010.06.038

J. Randerath , G. Goldenberg , W. Spijkers , Y. Li , & J. Hermsdorfer (2011). From pantomime to actual use: How affordances can facilitate actual tool-use. Neuropsychologia, 49(9), 24102416. doi: 10.1016/j.neuropsychologia.2011.04.017

J. Randerath , Y. Li , G. Goldenberg , & J. Hermsdorfer (2009). Grasping tools: Effects of task and apraxia. Neuropsychologia, 47(2), 497505. doi: 10.1016/j.neuropsychologia.2008.10.005

J. Randerath , K.F. Valyear , A. Hood , & S.H. Frey (2015). Two routes to the same action: An action repetition priming study. Journal of Motor Behavior, 47(2), 142152. doi: 10.1080/00222895.2014.961891

L.Y. Tarhan , C.E. Watson , & L.J. Buxbaum (2015). Shared and distinct neuroanatomic regions critical for tool-related action production and recognition: evidence from 131 left-hemisphere stroke patients. Journal of Cognitive Neuroscience, 27(12), 24912511. doi: 10.1162/jocn_a_00876

K.F. Valyear , J.P. Gallivan , D.A. McLean , & J.C. Culham (2012). fMRI repetition suppression for familiar but not arbitrary actions with tools. Journal of Neuroscience, 32(12), 42474259. doi: 10.1523/JNEUROSCI.5270-11.2012

D.C. Van Essen (2005). A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. Neuroimage, 28(3), 635662. doi: 10.1016/j.neuroimage.2005.06.058

G. Vannuscorps , L. Dricot , & A. Pillon (2016). Persistent sparing of action conceptual processing in spite of increasing disorders of action production: A case against motor embodiment of action concepts. Cognitive Neuropsychology, 33, 191219. doi: 10.1080/02643294.2016.1186615

G. Vingerhoets (2008). Knowing about tools: Neural correlates of tool familiarity and experience. Neuroimage, 40(3), 13801391. doi: 10.1016/j.neuroimage.2007.12.058

G. Vingerhoets (2014). Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools. Frontiers in Psychology, 5, 151. doi: 10.3389/fpsyg.2014.00151

G. Vingerhoets , F. Acke , A.S. Alderweireldt , J. Nys , P. Vandemaele , & E. Achten (2012). Cerebral lateralization of praxis in right- and left-handedness: Same pattern, different strength. Human Brain Mapping, 33(4), 763777. doi: 10.1002/hbm.21247

G. Vingerhoets , & A. Clauwaert (2015). Functional connectivity associated with hand shape generation: Imitating novel hand postures and pantomiming tool grips challenge different nodes of a shared neural network. Human Brain Mapping, 36(9), 34263440. doi: 10.1002/hbm.22853

G. Vingerhoets , J. Nys , P. Honore , E. Vandekerckhove , & P. Vandemaele (2013). Human left ventral premotor cortex mediates matching of hand posture to object use. PLoS One, 8(7), e70480. doi: 10.1371/journal.pone.0070480

G. Vingerhoets , E. Vandekerckhove , P. Honore , P. Vandemaele , & E. Achten (2011). Neural correlates of pantomiming familiar and unfamiliar tools: Action semantics versus mechanical problem solving? Human Brain Mapping, 32(6), 905918. doi: 10.1002/hbm.21078

C.E. Watson , & L.J. Buxbaum (2015). A distributed network critical for selecting among tool-directed actions. Cortex, 65, 6582. doi: 10.1016/j.cortex.2015.01.007

M.W. Woolrich , B.D. Ripley , M. Brady , & S.M. Smith (2001). Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage, 14(6), 13701386. doi: 10.1006/nimg.2001.0931

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the International Neuropsychological Society
  • ISSN: 1355-6177
  • EISSN: 1469-7661
  • URL: /core/journals/journal-of-the-international-neuropsychological-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary Materials

Przybylski and Króliczak supplementary material
Przybylski and Króliczak supplementary material 1

 PDF (1.6 MB)
1.6 MB


Full text views

Total number of HTML views: 14
Total number of PDF views: 239 *
Loading metrics...

Abstract views

Total abstract views: 293 *
Loading metrics...

* Views captured on Cambridge Core between 16th February 2017 - 22nd August 2017. This data will be updated every 24 hours.