Skip to main content Accessibility help

Real-Life Impact of Executive Function Impairments in Adults Who Were Born Very Preterm

  • Jasmin Kroll (a1), Vyacheslav Karolis (a1), Philip J. Brittain (a1), Chieh-En Jane Tseng (a1), Sean Froudist-Walsh (a1), Robin M. Murray (a1) and Chiara Nosarti (a1)...

Objectives: Children and adolescents who were born very preterm (≤32 weeks’ gestation) are vulnerable to experiencing cognitive problems, including in executive function. However, it remains to be established whether cognitive deficits are evident in adulthood and whether these exert a significant effect on an individual’s real-lifeachievement. Methods: Using a cross-sectional design, we tested a range of neurocognitive abilities, with a focus on executive function, in a sample of 122 very preterm individuals and 89 term-born controls born between 1979 and 1984. Associations between executive function and a range of achievement measures, indicative of a successful transition to adulthood, were examined. Results: Very preterm adults performed worse compared to controls on measures of intellectual ability and executive function with moderate to large effect sizes. They also demonstrated significantly lower achievement levels in terms of years spent in education, employment status, and on a measure of functioning in work and social domains. Results of regression analysis indicated a stronger positive association between executive function and real-life achievement in the very preterm group compared to controls. Conclusions: Very preterm born adults demonstrate executive function impairments compared to full-term controls, and these are associated with lower achievement in several real-life domains. (JINS, 2017, 23, 381–389)

Corresponding author
Correspondence and reprint requests to: Jasmin Kroll, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AF, UK. E-mail:
Hide All
Aarnoudse-Moens, C.S., Duivenvoorden, H.J., Weisglas-Kuperus, N., Van Goudoever, J.B., & Oosterlaan, J. (2012). The profile of executive function in very preterm children at 4 to 12 years. Developmental Medicine and Child Neurology, 54(3), 247253. doi: 10.1111/j.1469-8749.2011.04150.x
Aarnoudse-Moens, C.S., Smidts, D.P., Oosterlaan, J., Duivenvoorden, H.J., & Weisglas-Kuperus, N. (2009). Executive function in very preterm children at early school age. Journal of Abnormal Child Psychology, 37(7), 981993. doi: 10.1007/s10802-009-9327-z
Aarnoudse-Moens, C.S., Weisglas-Kuperus, N., Duivenvoorden, H.J., van Goudoever, J.B., & Oosterlaan, J. (2013). Executive function and IQ predict mathematical and attention problems in very preterm children. PLoS One, 8(2), e55994. doi: 10.1371/journal.pone.0055994
Aarnoudse-Moens, C.S., Weisglas-Kuperus, N., van Goudoever, J.B., & Oosterlaan, J. (2009). Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics, 124(2), 717728. doi: 10.1542/peds.2008-2816
Allen, M.C., Cristofalo, E., & Kim, C. (2010). Preterm birth: Transition to adulthood. Developmental Disabilities Research Reviews, 16(4), 323335. doi: 10.1002/ddrr.128
Anderson, P., & Doyle, L.W. (2003). Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. The Journal of the American Medical Association, 289(24), 32643272.
Anderson, P.J., & Doyle, L.W. (2004). Executive functioning in school-aged children who were born very preterm or with extremely low birth weight in the 1990s. Pediatrics, 114(1), 5057.
Basten, M., Jaekel, J., Johnson, S., Gilmore, C., & Wolke, D. (2015). Preterm birth and adult wealth: Mathematics skills count. Psychological Science, 26(10), 16081619. doi: 10.1177/0956797615596230
Benton, A.L., & Hamsher, K.D. (1976). Multilingual Aphasia Examination. Iowa City: University of Iowa.
Breeman, L.D., Jaekel, J., Baumann, N., Bartmann, P., & Wolke, D. (2015). Preterm cognitive function into adulthood. Pediatrics, 136(3), 415423. doi: 10.1542/peds.2015-0608
Brown, T.T., Kuperman, J.M., Chung, Y., Erhart, M., McCabe, C., Hagler, D.J., & Dale, A.M. (2012). Neuroanatomical assessment of biological maturity. Current Biology, 22(18), 16931698.
Burgess, P.W., & Shallice, T. (1997). The Hayling and Brixton Tests. Bury St. Edmunds: Thames Valley Test Company.
Burnett, A.C., Scratch, S.E., & Anderson, P.J. (2013). Executive function outcome in preterm adolescents. Early Human Development, 89(4), 215220. doi: 10.1016/j.earlhumdev.2013.01.013
Cheong, J.L., Anderson, P.J., Roberts, G., Burnett, A.C., Lee, K.J., Thompson, D.K., & Doyle, L.W. (2013). Contribution of brain size to IQ and educational underperformance in extremely preterm adolescents. PLoS One, 8(10), e77475. doi: 10.1371/journal.pone.0077475
Cheong, J.L., Thompson, D.K., Wang, H.X., Hunt, R.W., Anderson, P.J., Inder, T.E., & Doyle, L.W. (2009). Abnormal white matter signal on MR imaging is related to abnormal tissue microstructure. AJNR American Journal of Neuroradiology, 30(3), 623628. doi: 10.3174/ajnr.A1399
Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155159.
Conners, C.K. (2000). Conners’ continuous performance test II: Technical guide. Toronto, Canada: Multi-Health Systems.
Cooke, R.W. (2004). Health, lifestyle, and quality of life for young adults born very preterm. Archives of Disease in Childhood, 89(3), 201206.
Dahlin, E., Nyberg, L., Backman, L., & Neely, A.S. (2008). Plasticity of executive functioning in young and older adults: Immediate training gains, transfer, and long-term maintenance. Psychology and Aging, 23(4), 720730. doi: 10.1037/a0014296
De Luca, C.R., Wood, S.J., Anderson, V., Buchanan, J.A., Proffitt, T.M., Mahony, K., & Pantelis, C. (2003). Normative data from the CANTAB. I: Development of executive function over the lifespan. Journal of Clinical and Experimental Neuropsychology, 25(2), 242254. doi: 10.1076/jcen.
Delobel-Ayoub, M., Arnaud, C., White-Koning, M., Casper, C., Pierrat, V., Garel, M., & Group, E.S. (2009). Behavioral problems and cognitive performance at 5 years of age after very preterm birth: The EPIPAGE Study. Pediatrics, 123(6), 14851492. doi: 10.1542/peds.2008-1216
Eryigit Madzwamuse, S., Baumann, N., Jaekel, J., Bartmann, P., & Wolke, D. (2015). Neuro-cognitive performance of very preterm or very low birth weight adults at 26 years. Journal of Child Psychology and Psychiatry, and allied disciplines, 56(8), 857864. doi: 10.1111/jcpp.12358
Fray, P.J., Robbins, T.W., & Sahakian, B.J. (1996). Neuorpsychiatyric applications of CANTAB International. Journal of Geriatric Psychiatry Volume 11, Issue 4. International Journal of Geriatric Psychiatry, 11(4), 329336.
Froudist-Walsh, S., Karolis, V., Caldinelli, C., Brittain, P.J., Kroll, J., Rodriguez-Toscano, E., … Nosarti, C. (2015). Very early brain damage leads to remodeling of the working memory system in adulthood: A combined fMRI/tractography study. The Journal of Neuroscience, 35(48), 1578715799. doi: 10.1523/JNEUROSCI.4769-14.2015
Goodman, S.H., Sewell, D.R., Cooley, E.L., & Leavitt, N. (1993). Assessing levels of adaptive functioning: The Role Functioning Scale. Community Mental Health Journal, 29(2), 119131.
Grunewaldt, K.H., Lohaugen, G.C., Austeng, D., Brubakk, A.M., & Skranes, J. (2013). Working memory training improves cognitive function in VLBW preschoolers. Pediatrics, 131(3), e747e754. doi: 10.1542/peds.2012-1965
Hack, M. (2009). Adult outcomes of preterm children. Journal of Developmental & Behavioral Pediatrics, 30(5), 460470. doi: 10.1097/DBP.0b013e3181ba0fba
Hallin, A.-L., Hellström-Westas, L., & Stjernqvist, K. (2010). Follow-up of adolescents born extremely preterm cognitive function and health at 18 years of age. Acta Paediatrica, 99(9), 14011406.
Heinonen, K., Pesonen, A.K., Lahti, J., Pyhälä, R., Strang-Karlsson, S., Hovi, P., & Raikkonen, K. (2012). Self- and parent-rated executive functioning in young adults with very low birth weight. Pediatrics, 131(1), e243250.
HMSO. (1991). Registrar General Office of Population Censuses and Surveys, Standard Occupational Classification. London: HMSO.
Hsu, N.S., Novick, J.M., & Jaeggi, S.M. (2014). The development and malleability of executive control abilities. Frontiers in Behavioral Neuroscience, 8, 221. doi: 10.3389/fnbeh.2014.00221
Joseph, R.M., O–Shea, T.M., Allred, E.N., Heeren, T., Hirtz, D., Jara, H., & Kuban, K.C.K. for the ELGAN Study Investigators (2016). Neurocognitive and Academic Outcomes at Age 10 Years of Extremely Preterm Newborns. Pediatrics, 137(4), e20154343.
Karolis, V.R., Froudist-Walsh, S., Brittain, P.J., Kroll, J., Ball, G., Edwards, A.D., & Nosarti, C. (2016). Reinforcement of the Brain’s Rich-Club architecture following early neurodevelopmental disruption caused by very preterm birth. Cerebral Cortex, 26(3), 13221335. doi: 10.1093/cercor/bhv305
Kerr-Wilson, C.O., Mackay, D.F., Smith, G.C., & Pell, J.P. (2012). Meta-analysis of the association between preterm delivery and intelligence. Journal of Public Health (Oxford, England), 34(2), 209216. doi: 10.1093/pubmed/fdr024
Lindstrom, K., Lindblad, F., & Hjern, A. (2009). Psychiatric morbidity in adolescents and young adults born preterm: A Swedish national cohort study. Pediatrics, 123(1), e47e53.
Lindstrom, K., Winbladh, B., Haglund, B., & Hjern, A. (2007). Preterm infants as young adults: A Swedish national cohort study. Pediatrics, 120(1), 7077.
Lohaugen, G.C., Antonsen, I., Haberg, A., Gramstad, A., Vik, T., Brubakk, A.M., & Skranes, J. (2011). Computerized working memory training improves function in adolescents born at extremely low birth weight. Journal of Pediatrics, 158(4), 555561 e554. doi:10.1016/j.jpeds.2010.09.060.
Lohaugen, G.C., Gramstad, A., Evensen, K.A., Martinussen, M., Lindqvist, S., Indredavik, M., & Skranes, J. (2010). Cognitive profile in young adults born preterm at very low birthweight. Developmental Medicine and Child Neurology, 52(12), 11331138. doi: 10.1111/j.1469-8749.2010.03743.x
Luu, T.M., Ment, L., Allan, W., Schneider, K., & Vohr, B.R. (2011). Executive and memory function in adolescents born very preterm. Pediatrics, 127(3), e639e646. doi: 10.1542/peds.2010-1421
Mathiasen, R., Hansen, B.M., Nybo Anderson, A.M., & Greisen, G. (2009). Socio-economic achievements of individuals born very preterm at the age of 27 to 29 years: A nationwide cohort study. Developmental Medicine & Child Neurology, 51(11), 901908. doi: 10.1111/j.1469-8749.2009.03331.x
Moster, D., Lie, R.T., & Markestad, T. (2008). Long-term medical and social consequences of preterm birth. New England Journal of Medicine, 359(3), 262273.
Mulder, H., Pitchford, N.J., Hagger, M.S., & Marlow, N. (2009). Development of executive function and attention in preterm children: A systematic review. Developmental Neuropsychology, 34(4), 393421. doi: 10.1080/87565640902964524
Nam, K.W., Castellanos, N., Simmons, A., Froudist-Walsh, S., Allin, M.P., Walshe, M., & Nosarti, C. (2015). Alterations in cortical thickness development in preterm-born individuals: Implications for high-order cognitive functions. Neuroimage, 115, 6475. doi: 10.1016/j.neuroimage.2015.04.015
Nosarti, C., & Froudist-Walsh, S. (2016). Alterations in development of hippocampal and cortical memory mechanisms following very preterm birth. Developmental Medicine and Child Neurology, 58(Suppl 4), 3545. doi: doi:10.1111/dmcn.13042
Nosarti, C., Giouroukou, E., Micali, N., Rifkin, L., Morris, R.G., & Murray, R.M. (2007). Impaired executive functioning in young adults born very preterm. Journal of the International Neuropsychological Society, 13(4), 571581. doi: 10.1017/S1355617707070725
Nosarti, C., Murray, R.M., Reichenberg, A., Cnattingius, S., Lambe, M.P., Yin, L., & Hultman, C.M. (2012). Preterm birth and psychiatric disorders in young adult life. Archives of General Psychiatry, 69(6), 610617.
Nosarti, C., Nam, K.W., Walshe, M., Murray, R.M., Cuddy, M., Rifkin, L., & Allin, M.P. (2014). Preterm birth and structural brain alterations in early adulthood. Neuroimage, Clinical, 6, 180191. doi: 10.1016/j.nicl.2014.08.005
Nosarti, C., Walshe, M., Rushe, T.M., Rifkin, L., Wyatt, J., Murray, R.M., & Allin, M.P. (2011). Neonatal ultrasound results following very preterm birth predict adolescent behavioral and cognitive outcome. Developmental Neuropsychology, 36(1), 118135. doi: 10.1080/87565641.2011.540546
Petanjek, Z., Judas, M., Simic, G., Rasin, M.R., Uylings, H.B., Rakic, P., & Kostovic, I. (2011). Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 108(32), 1328113286. doi: 10.1073/pnas.1105108108
Roth, S.C., Baudin, J., Pezzani-Goldsmith, M., Townsend, J., Reynolds, E.O., & Stewart, A.L. (1994). Relation between neurodevelopmental status of very preterm infants at one and eight years. Developmental Medicine and Child Neurology, 36(12), 10491062.
Saigal, S., Day, K.L., Van Lieshout, R.J., Schmidt, L.A., Morrison, K.M., & Boyle, M.H. (2016). Health, wealth, social integration, and sexuality of extremely low-birth-weight prematurely born adults in the fourth decade of life. JAMA Pediatrics, 170(7), 678686. doi: 10.1001/jamapediatrics.2016.0289
Saigal, S., Feeny, D., Rosenbaum, P., Furlong, W., Burrows, E., & Stoskopf, B. (1996). Self-perceived health status and health-related quality of life of extremely low-birth-weight infants at adolescence. The Journal of the American Medical Association, 276(6), 453459.
Saigal, S., Stoskopf, B., Streiner, D., Boyle, M., Pinelli, J., Paneth, N., & Goddeeris, J. (2006). Transition of extremely low-birth-weight infants from adolescence to young adulthood. The Journal of the American Medical Association, 295, 667675.
Salthouse, T. (2012). Consequences of age-related cognitive declines. Annual Review of Psychology, 63, 201226. doi: 10.1146/annurev-psych-120710-100328
Swamy, G.K., Ostbye, T., & Skjaerven, R. (2008). Association of preterm birth with long-term survival, reproduction, and next-generation preterm birth. The Journal of the American Medical Association, 299(12), 14291436. doi: 10.1001/jama.299.12.1429
Tombaugh, T.N. (2004). Trail Making Test A and B: Normative data stratified by age and education. Archives of Clinical Neuropsychology, 19(2), 203214. doi: 10.1016/S0887-6177(03)00039-8
Van Lieshout, R.J., Boyle, M.H., Saigal, S., Morrison, K., & Schmidt, L.A. (2015). Mental health of extremely low birth weight survivors in their 30s. Pediatrics, 135(3), 452459. doi: 10.1542/peds.2014-3143
Wechsler, D. (1981). Wechsler Adult Intelligence Scale. New York: Psychological Corporation.
Wechsler, D. (1999). Wechsler Abbreviated Scale of Intelligence. New York: The Psychological Corporation.
Weissman, M.M., & Bothwell, S. (1976). Assessment of social adjustment by patient self-report. Archives of General Psychiatry, 33(9), 11111115.
Winstanley, A., Lamb, M.E., Ellis-Davies, K., & Rentfrow, P.J. (2015). The subjective well-being of adults born preterm. Journal of Research in Personality, 59, 2330. doi:
Wolke, D., & Meyer, R. (1999). Cognitive status, language attainment, and prereading skills of 6-year-old very preterm children and their peers: The Bavarian Longitudinal Study. Developmental Medicine and Child Neurology, 41(2), 94109.
Woodward, L.J., Clark, C.A., Bora, S., & Inder, T.E. (2012). Neonatal white matter abnormalities an important predictor of neurocognitive outcome for very preterm children. PLoS One, 7(12), e51879. doi: 10.1371/journal.pone.0051879
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the International Neuropsychological Society
  • ISSN: 1355-6177
  • EISSN: 1469-7661
  • URL: /core/journals/journal-of-the-international-neuropsychological-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed