Skip to main content

The relationship between general intellectual ability and performance on ecologically valid executive tests in a severe brain injury sample


Recent studies of brain injured and healthy individuals have provided empirical support for the theoretical proposition that executive function and general intelligence are closely associated by demonstrating that performance on tests of executive function is correlated with general intellectual ability (g). In the present investigation, the relationship between performance on the Wechsler Adult Intelligence Scale-III (WAIS-III), as a measure of g, and performance on recently developed ecological tests of executive function [i.e., Hayling and Brixton, Zoo Map and Key Search sub-tests from the Behavioral Assessment of the Dysexecutive Syndrome (BADS) battery], was examined in a sample of 118 severely brain injured individuals. The results indicated that (a) performance on tests of executive function share significant variance, and (b) a proportion of that shared variance is associated with performance on the WAIS-III. Correlations between conventional measures of executive function (i.e. Trails B and Controlled Oral Word Association) and WAIS-III were of comparable magnitude to the correlations between new, ecologically valid executive tests and WAIS-III. The results provide some support to the notion that tests of executive function measure non-specific intellectual functions, reminiscent of g. (JINS, 2007, 13, 90–98.)

Corresponding author
Correspondence and reprint requests to: Dr. Christina Liossi, School of Psychology, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom. E-mail:
Hide All


Ackerman, P.L., Beier, M.E., & Boyle, M.O. (2005). Working Memory and Intelligence: The Same or Different Constructs? Psychological Bulletin, 131, 3060.
Anstey, K.J., Hofer, S.M., & Luszcz, M.A. (2003). Cross-sectional and longitudinal patterns of dedifferentiation in late-life cognitive and sensory function: The effects of age, ability, attrition, and occasion of measurement. Journal of Experimental Psychology: General, 132, 470487.
Benton, A.L. & Hamsher, K. (1976). Manual for Multilingual Aphasia Examination. Iowa City: University of Iowa.
Burgess, P.W. (2000). Strategy application disorder: The role of the frontal lobes in human multitasking. Psychological Research, 63, 279288.
Burgess, P.W. & Shallice, T. (1997). The Hayling and Brixton Tests. Bury St. Edmunds, UK: Thames Valley Test Company.
Carroll, J.B. (1993). Human cognitive abilities: A survey of factor analytic studies. Cambridge, England: Cambridge University Press.
Catell, R.B. (1973). Measuring intelligence with a culture fair test. Champagne, IL: The Institute For Personality And Ability Testing.
Chan, C.K. & Manley, T. (2002). The application of dysexecutive measures across cultures: Performance and checklist assessment in neurologically healthy and traumatically brain-injured Hong Kong Chinese volunteers. Journal of the International Neuropsychological Society, 8, 771780.
Collette, F., Van der Linden, M., Delfiore, G., Degueldre, C., Luxen, A., & Salmon, E. (2001). The functional anatomy of inhibition processes investigated with the Hayling task. Neuroimage, 14, 258267.
Crawford, J.R. & Henry, J.D. (2005). Assessment of executive deficits. In P.W. Halligan & N. Wade (Eds.), The Effectiveness of Rehabilitation for Cognitive Deficits, (pp. 233245). London: Oxford University Press.
Deary, I.J. (2005). The principles of cognition and the abilities of man: A natural collaboration. Cortex, 41, 225227.
Della Sala, S., Gray, C., Spinnler, H., & Trivelli, C. (1998). Frontal lobe functioning in man: The riddle revisited. Archives of Clinical Neuropsychology, 13, 663682
Duncan, J. (1995). Attention, intelligence, and the frontal lobes. In M.S. Gazzaniga (Ed.), Cognitive Neurosciences (pp. 721733). Cambridge, MA: MIT Press.
Duncan, J. & Owen, A.M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23, 475483.
Duncan, J., Burgess, P., & Emslie, H. (1995). Fluid intelligence after frontal lobe lesions. Neuropsychologia, 33, 261268.
Duncan, J., Johnson, R., Swales, M., & Freer, C. (1997). Frontal lobe deficits after head injury: Unity and diversity of function. Cognitive Neuropsychology, 14, 713741.
Eslinger, P.J. & Grattan, L.M. (1993). Frontal lobe and frontal striatal substrates for different forms of human cognitive flexibility. Neuropsychologia, 31, 1728.
Goodglass, H. & Kaplan, E. (1972). An assessment of aphasia and related disorders. Philadelphia: Lea and Fibiger.
Gray, J.R., Charbris, C.F., & Braver, T.S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6, 316322.
Gronwall, D.M. & Wrightson, P. (1974). Delayed recovery of intellectual function after minor head injury. Lancet, 9, 605609.
Horn, J.l. & Cattell, R.B. (1966). Refinement and test of the theory of fluid and crystallized intelligence. Journal of Educational Psychology, 57, 253270.
Jensen, A.R. & Weng, L.J. (1994). What is a good g? Intelligence, 18, 231258.
Luria, A.R. (1966). Higher Cortical Functions in Man. London: Tavistock.
McMillan, T.M., Jongen, E.L.M., & Greenwood, R.J. (1996). Assessment of post-traumatic amnesia after severe closed head injury: Retrospective or prospective? Journal of Neurology, Neurosurgery, and Psychiatry, 60, 422427.
Milner, B. (1963). Effects of different brain lesions on card sorting: The role of the frontal lobe. Archives in Neurology, 9, 100110.
Nathaniel-James, D.A., Fletcher, P., & Frith, C.D. (1997). The functional anatomy of verbal initiation and suppression using the Hayling Test. Neuropsychologia, 35, 559566.
Obonsawin, M.C., Crawford, J.R., Page, J., Chalmers, P., Cochrane, R., & Low, G. (2002). Performance on tests of frontal lobe function reflect general intellectual ability. Neuropsychologia, 40, 970977.
Odhuba, R.A., van den Broek, M.D., & Johns, L.C. (2005). Ecological validity of measures of executive functioning. British Journal of Clinical Psychology, 44, 269278.
Podsakoff, P.M., MacKenzie, S.B., Lee, J., & Podsakoff, N.P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88, 879903.
Rabbitt, P. (1997). Methodologies and Models and the Study of Executive Function. In P. Rabbitt (Ed.), Methodology of Frontal and Executive Function. Hove, UK: Psychology Press.
Reinert, G., Baltes, P., & Schmidt, L.R. (1965). Faktorenanalytishce Untersuchungen zur Differenzuierungshypothese der Intelligencz: Die Liestungsdifferenzierungshypothese (Factor analytic investigation of the differentiation hypothesis of intelligence: The differential performance of intelligence). Psychologische Forschung, 28, 246300.
Reitan, R.M. & Wolfson, D. (1985). The Halstead-Reitan Neuropsychological Test Battery. Tucson, AZ: Neuropsychology Press.
Reverberi, C., Lavaroni, A., Gigli, G.L., Skrap, M., & Shallice, T. (2005). Specific impairments of rule induction in different frontal lobe subgroups. Neuropsychologia, 43, 460472.
Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society of London B, 298, 199209.
Shoqeirat, M.A, Maize, A., MacDonald, C., Meudal, P., & Pickering, A. (1990). Performance on tests sensitive to frontal lobe lesions by patients with organic amnesia. Journal of Clinical Psychology, 29, 401408.
Spearman, C. (1927). The Abilities of Man. London: Macmillan.
Sternberg, R.J. (2000). Handbook of Intelligence. New York: Cambridge University Press.
Sternberg, R.J. (2005). The importance of converging operations in the study of human intelligence. Cortex, 41, 243244.
Stroop, J.R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643662.
Stuss, D.T., Alexander, M.P., Hamer, L., Palumbo, C., Dempster, R., Binns, M., Levine, B., & Izukawa, D. (1998). The effects of focal anterior and posterior brain lesions on verbal fluency. Journal of the International Neuropsychological Society, 4, 265278.
Teasdale, G. & Jennett, B. (1974). Assessment of coma and impaired consciousness: A practical scale. Lancet, 8, 14.
Temple, C. (1997). Developmental cognitive neuropsychology. East Sussex, UK: Psychology Press.
Tulsky, D., Zhu, J., & Ledbetter, M.F. (1997). The WAIS III, WMS III Technical Manual. San Antonio, TX: The Psychological Corporation.
Wechsler, D. (1981). Wechsler Adult Intelligence Scale-Revised. New York: The Psychological Corporation.
Wechsler, D. (1998). Wechsler Adult Intelligence Scale-Third Edition. San Antonio, TX: The Psychological Corporation.
Wechsler, D., Wycherley, R.J., Benjamin, L., Crawford, J.R., & Mockler, D. (1998). Manual for the Wechsler Memory Scale–Third Edition (U.K.). San Antonio, TX: The Psychological Corporation.
Williams, E.J. (1959). The comparison of regression variables. Journal of the Royal Statistical Society, 21, 396399.
Wilson, B.A., Alderman, N., Burgess, P.W., Emslie, H., & Evans, J.J. (1996). Behavioural Assessment of the Dysexecutive Syndrome. Bury St. Edmunds, UK: Thames Valley Test Company.
Wood, R.Ll & Liossi, C. (2006). The ecological validity of executive tests in a severely brain injured sample. Archives of Clinical Neuropsychology, 21, 429437.
Wood, R.Ll. & Rutterford, N. (2004). Relationships between measured cognitive ability and reported psychosocial activity after bilateral frontal lobe injury: An 18-year follow-Up. Neuropsychological Rehabilitation, 14, 329350.
Zakzanis, K.K., Mraz, R., & Graham, S.J. (2005). An fMRI study of the Trail Making Test. Neuropsychologia, 43, 18781886.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the International Neuropsychological Society
  • ISSN: 1355-6177
  • EISSN: 1469-7661
  • URL: /core/journals/journal-of-the-international-neuropsychological-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed