Skip to main content Accessibility help
×
×
Home

Semantic Memory Activation After Acute Exercise in Healthy Older Adults

  • Junyeon Won (a1), Alfonso J. Alfini (a2), Lauren R. Weiss (a1) (a3), Corey S. Michelson (a1), Daniel D. Callow (a1), Sushant M. Ranadive (a1), Rodolphe J. Gentili (a1) (a3) and J. Carson Smith (a1) (a3)...
Abstract

Objectives: A growing body of research suggests that regular participation in long-term exercise is associated with enhanced cognitive function. However, less is known about the beneficial effects of acute exercise on semantic memory. This study investigated brain activation during a semantic memory task after a single session of exercise in healthy older adults using functional magnetic resonance imaging (fMRI). Methods: Using a within-subjects counterbalanced design, 26 participants (ages, 55–85 years) underwent two experimental visits on separate days. During each visit, participants engaged in 30 min of rest or stationary cycling exercise immediately before performing a Famous and Non-Famous name discrimination task during fMRI scanning. Results: Acute exercise was associated with significantly greater semantic memory activation (Famous>Non-Famous) in the middle frontal, inferior temporal, middle temporal, and fusiform gyri. A planned comparison additionally showed significantly greater activation in the bilateral hippocampus after exercise compared to rest. These effects were confined to correct trials, and as expected, there were no differences between conditions in response time or accuracy. Conclusions: Greater brain activation following a single session of exercise suggests that exercise may increase neural processes underlying semantic memory activation in healthy older adults. These effects were localized to the known semantic memory network, and thus do not appear to reflect a general or widespread increase in brain blood flow. Coupled with our prior exercise training effects on semantic memory-related activation, these data suggest the acute increase in neural activation after exercise may provide a stimulus for adaptation over repeated exercise sessions. (JINS, 2019, 00, 1–12)

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Semantic Memory Activation After Acute Exercise in Healthy Older Adults
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Semantic Memory Activation After Acute Exercise in Healthy Older Adults
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Semantic Memory Activation After Acute Exercise in Healthy Older Adults
      Available formats
      ×
Copyright
Corresponding author
Correspondence and reprint requests to: J. Carson Smith, Department of Kinesiology, University of Maryland, College Park, MD, 20742. E-mail: carson@umd.edu
References
Hide All
Adlard, P.A., Perreau, V.M., Pop, V., & Cotman, C.W. (2005). Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. Journal of Neuroscience, 25(17), 42174221.
Basso, J.C., & Suzuki, W.A. (2017). The effects of acute exercise on mood, cognition, neurophysiology and neurochemical pathways: A review. Brain Plasticity, 28, 127152.
Binder, J.R., Desai, R.H., Graves, W.W., & Conant, L.L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 27672796.
Bookheimer, S.Y., Strojwas, M.H., Cohen, M.S., Saunders, A.M., Pericak-Vance, M.A., Mazziotta, J. C., & Small, G. W. (2000). Patterns of brain activation in people at risk for Alzheimer’s disease. New England Journal of Medicine, 343(7), 450456.
Borg, G. (1970). Perceived exertion as an indicator of somatic stress. Scandinavian Journal of Rehabilitation Medicine, 2(2), 92.
Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17(1), 85.
Colcombe, S.J., Erickson, K.I., Scalf, P.E., Kim, J.S., Prakash, R., McAuley, E., . . . Kramer, A.F. (2006). Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 61(11), 11661170.
Cotman, C.W., & Engesser-Cesar, C. (2002). Exercise enhances and protects brain function. Exercise and Sport Sciences Reviews, 30(2), 7579.
Cox, R.W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3), 162173.
Crosson, B., Benjamin, M., & Levy, I. (2007). Role of the basal ganglia in language and semantics: Supporting cast. New York, NY: Cambridge University Press.
Detoledo-Morrell, L., Geinisman, Y., & Morrell, F. (1988). Age-dependent alterations in hippocampal synaptic plasticity: Relation to memory disorders. Neurobiology of Aging, 9, 581590.
Douville, K., Woodard, J.L., Seidenberg, M., Miller, S.K., Leveroni, C.L., Nielson, K.A., … Rao, S.M. (2005). Medial temporal lobe activity for recognition of recent and remote famous names: An event-related fMRI study. Neuropsychologia, 43(5), 693703.
Eklund, A., Nichols, T., & Knutsson, H. (2015). Can parametric statistical methods be trusted for fMRI based group studies? ArXiv Preprint ArXiv:1511.01863. Retrieved from https://arxiv.org/abs/1511.01863
Erickson, K.I., Prakash, R.S., Voss, M.W., Chaddock, L., Heo, S., McLaren, M., … others. (2010). Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. Journal of Neuroscience, 30(15), 53685375.
Erickson, K.I., Voss, M.W., Prakash, R.S., Basak, C., Szabo, A., Chaddock, L., … Kramer, A.F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 30173022.
Etnier, J.L., Wideman, L., Labban, J.D., Piepmeier, A.T., Pendleton, D.M., Dvorak, K.K., & Becofsky, K. (2016). The effects of acute exercise on memory and brain-derived neurotrophic factor (BDNF). Journal of Sport and Exercise Psychology, 38(4), 331340.
Ferré, S., & O’Brien, M.C. (2011). Alcohol and caffeine: The perfect storm. Journal of Caffeine Research, 1(3), 153162.
Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2), 774781.
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198.
Foster, T.C. (1999). Involvement of hippocampal synaptic plasticity in age-related memory decline. Brain Research Reviews, 30(3), 236249.
Gómez-Pinilla, F., Ying, Z., Roy, R.R., Molteni, R., & Edgerton, V.R. (2002). Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. Journal of Neurophysiology, 88(5), 21872195.
Gordon, B.A., Rykhlevskaia, E.I., Brumback, C.R., Lee, Y., Elavsky, S., Konopack, J.F., … Gratton, G. (2008). Neuroanatomical correlates of aging, cardiopulmonary fitness level, and education. Psychophysiology, 45(5), 825838.
Hantke, N., Nielson, K.A., Woodard, J.L., Breting, L.M.G., Butts, A., Seidenberg, M., … Rao, S.M. (2013). Comparison of semantic and episodic memory BOLD fMRI activation in predicting cognitive decline in older adults. Journal of the International Neuropsychological Society, 19(1), 1121.
Heath, G.W., Gavin, J.R. III, Hinderliter, J.M., Hagberg, J.M., Bloomfield, S.A., & Holloszy, J.O. (1983). Effects of exercise and lack of exercise on glucose tolerance and insulin sensitivity. Journal of Applied Physiology, 55(2), 512517.
Henry, J.D., Crawford, J.R., & Phillips, L.H. (2004). Verbal fluency performance in dementia of the Alzheimer’s type: A meta-analysis. Neuropsychologia, 42(9), 12121222.
Hyodo, K., Dan, I., Suwabe, K., Kyutoku, Y., Yamada, Y., Akahori, M., … Soya, H. (2012). Acute moderate exercise enhances compensatory brain activation in older adults. Neurobiology of Aging, 33(11), 26212632.
Ide, K., & Secher, N.H. (2000). Cerebral blood flow and metabolism during exercise. Progress in Neurobiology, 61(4), 397414.
Intlekofer, K.A., & Cotman, C.W. (2013). Exercise counteracts declining hippocampal function in aging and Alzheimer’s disease. Neurobiology of Disease, 57, 4755.
Jonker, C., Geerlings, M.I., & Schmand, B. (2000). Are memory complaints predictive for dementia? A review of clinical and population-based studies. International Journal of Geriatric Psychiatry, 15(11), 983991.
Kamijo, K., Nishihira, Y., Higashiura, T., & Kuroiwa, K. (2007). The interactive effect of exercise intensity and task difficulty on human cognitive processing. International Journal of Psychophysiology, 65(2), 114–121.
Kuhn, H.G., Dickinson-Anson, H., & Gage, F.H. (1996). Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation. Journal of Neuroscience, 16(6), 20272033.
Leirer, O., Morrow, D.G., Pariante, G.M., & Sheikh, J.I. (1988). Elders’ nonadherence, its assessment, and computer assisted instruction for medication recall training. Journal of the American Geriatrics Society, 36(10), 877884.
Lonie, J.A., Herrmann, L.L., Tierney, K.M., Donaghey, C., O’Carroll, R., Lee, A., & Ebmeier, K. P. (2009). Lexical and semantic fluency discrepancy scores in aMCI and early Alzheimer’s disease. Journal of Neuropsychology, 3(1), 7992.
MacIntosh, B.J., Crane, D.E., Sage, M.D., Rajab, A.S., Donahue, M.J., McIlroy, W.E., & Middleton, L.E. (2014). Impact of a single bout of aerobic exercise on regional brain perfusion and activation responses in healthy young adults. PLoS One, 9(1), e85163.
McMorris, T., Collard, K., Corbett, J., Dicks, M., & Swain, J.P. (2008). A test of the catecholamines hypothesis for an acute exercise–cognition interaction. Pharmacology Biochemistry and Behavior, 89(1), 106115.
Meeusen, R., Smolders, I., Sarre, S., De Meirleir, K., Keizer, H., Serneels, M., … Michotte, Y. (1997). Endurance training effects on neurotransmitter release in rat striatum: An in vivo microdialysis study. Acta Physiologica Scandinavica, 159(4), 335341.
Morrison, J.H., & Hof, P.R. (1997). Life and death of neurons in the aging brain. Science, 278(5337), 412419.
Nielson, K.A., Douville, K.L., Seidenberg, M., Woodard, J.L., Miller, S.K., Franczak, M., … Rao, S.M. (2006). Age-related functional recruitment for famous name recognition: An event-related fMRI study. Neurobiology of Aging, 27(10), 14941504.
Nouchi, R., Taki, Y., Takeuchi, H., Sekiguchi, A., Hashizume, H., Nozawa, T., … Kawashima, R. (2014). Four weeks of combination exercise training improved executive functions, episodic memory, and processing speed in healthy elderly people: Evidence from a randomized controlled trial. Age, 36(2), 787799.
O’Brien, J.L., O’Keefe, K.M., LaViolette, P.S., DeLuca, A.N., Blacker, D., Dickerson, B.C., & Sperling, R.A. (2010). Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline. Neurology, 74(24), 19691976.
Pereira, A.C., Huddleston, D.E., Brickman, A.M., Sosunov, A.A., Hen, R., McKhann, G.M., … Small, S.A. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 104(13), 56385643.
Pontifex, M.B., Gwizdala, K.L., Weng, T.B., Zhu, D.C., & Voss, M.W. (2018). Cerebral blood flow is not modulated following acute aerobic exercise in preadolescent children. International Journal of Psychophysiology, 134, 4451.
Rao, S.M., Bonner-Jackson, A., Nielson, K.A., Seidenberg, M., Smith, J.C., Woodard, J.L., & Durgerian, S. (2015). Genetic risk for Alzheimer’s disease alters the five-year trajectory of semantic memory activation in cognitively intact elders. Neuroimage, 111, 136146.
Raz, N., Lindenberger, U., Rodrigue, K.M., Kennedy, K.M., Head, D., Williamson, A., … Acker, J.D. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15(11), 16761689.
Rejeski, W.J., & Mihalko, S.L. (2001). Physical activity and quality of life in older adults. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 56(Suppl. 2), 2335.
Reuter-Lorenz, P.A., & Park, D.C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review, 24(3), 355370.
Ruscheweyh, R., Willemer, C., Krüger, K., Duning, T., Warnecke, T., Sommer, J., … Flöel, A. (2011). Physical activity and memory functions: An interventional study. Neurobiology of Aging, 32(7), 13041319.
Russo-Neustadt, A.A., Alejandre, H., Garcia, C., Ivy, A.S., & Chen, M.J. (2004). Hippocampal brain-derived neurotrophic factor expression following treatment with reboxetine, citalopram, and physical exercise. Neuropsychopharmacology, 29(12), 2189.
Sallis, J.F., Haskell, W.L., Wood, P.D., Fortmann, S.P., Rogers, T., Blair, S.N., & Paffenbarger, R.S. Jr. (1985). Physical activity assessment methodology in the Five-City Project. American Journal of Epidemiology, 121(1), 91106.
Segal, S.K., Cotman, C.W., & Cahill, L.F. (2012). Exercise-induced noradrenergic activation enhances memory consolidation in both normal aging and patients with amnestic mild cognitive impairment. Journal of Alzheimer’s Disease, 32(4), 10111018.
Seidenberg, M., Guidotti, L., Nielson, K.A., Woodard, J.L., Durgerian, S., Antuono, P., … Rao, S.M. (2009). Semantic memory activation in individuals at risk for developing Alzheimer disease. Neurology, 73(8), 612620.
Seidenberg, M., Kay, C.D., Woodard, J.L., Nielson, K.A., Smith, J.C., Kandah, C., … Rao, S.M. (2013). Recognition of famous names predicts cognitive decline in healthy elders. Neuropsychology, 27(3), 333.
Smith, J.C., Nielson, K.A., Antuono, P., Lyons, J.-A., Hanson, R.J., Butts, A.M., … Verber, M.D. (2013). Semantic memory functional MRI and cognitive function after exercise intervention in mild cognitive impairment. Journal of Alzheimer’s Disease, 37(1), 197215.
Smith, J.C., Nielson, K.A., Woodard, J.L., Seidenberg, M., Durgerian, S., Antuono, P., … Rao, S.M. (2011). Interactive effects of physical activity and APOE-ε4 on BOLD semantic memory activation in healthy elders. Neuroimage, 54(1), 635644.
Smith, J.C., Nielson, K.A., Woodard, J.L., Seidenberg, M., Verber, M.D., Durgerian, S., … Lancaster, M.A. (2011). Does physical activity influence semantic memory activation in amnestic mild cognitive impairment? Psychiatry Research: Neuroimaging, 193(1), 6062.
Smith, J.C., Paulson, E.S., Cook, D.B., Verber, M.D., & Tian, Q. (2010). Detecting changes in human cerebral blood flow after acute exercise using arterial spin labeling: Implications for fMRI. Journal of Neuroscience Methods, 191(2), 258262.
Sugarman, M.A., Woodard, J.L., Nielson, K.A., Seidenberg, M., Smith, J.C., Durgerian, S., & Rao, S.M. (2012). Functional magnetic resonance imaging of semantic memory as a presymptomatic biomarker of Alzheimer’s disease risk. Biochimica et Biophysica Acta, 1822(3), 442456.
Suwabe, K., Byun, K., Hyodo, K., Reagh, Z.M., Roberts, J.M., Matsushita, A., … Suzuki, K. (2018). Rapid stimulation of human dentate gyrus function with acute mild exercise. Proceedings of the National Academy of Sciences of the United States of America, 115(41), 1048710492.
Trejo, J.L., Carro, E., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. Journal of Neuroscience, 21(5), 16281634.
Van Praag, H., Shubert, T., Zhao, C., & Gage, F.H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. Journal of Neuroscience, 25(38), 86808685.
Vance, D.E., Wadley, V.G., Ball, K.K., Roenker, D.L., & Rizzo, M. (2005). The effects of physical activity and sedentary behavior on cognitive health in older adults. Journal of Aging and Physical Activity, 13(3), 294313.
Vaynman, S., & Gomez-Pinilla, F. (2006). Revenge of the “sit”: How lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. Journal of Neuroscience Research, 84(4), 699715.
Weinberg, L., Hasni, A., Shinohara, M., & Duarte, A. (2014). A single bout of resistance exercise can enhance episodic memory performance. Acta Psychologica, 153, 1319.
Winter, B., Breitenstein, C., Mooren, F.C., Voelker, K., Fobker, M., Lechtermann, A., … Knecht, S. (2007). High impact running improves learning. Neurobiology of Learning and Memory, 87(4), 597609.
Woodard, J.L., Seidenberg, M., Nielson, K.A., Antuono, P., Guidotti, L., Durgerian, S., … Rao, S.M. (2009). Semantic memory activation in amnestic mild cognitive impairment. Brain, 132(8), 20682078.
Woodard, J.L., Sugarman, M.A., Nielson, K.A., Smith, J.C., Seidenberg, M., Durgerian, S., … Rao, S.M. (2012). Lifestyle and genetic contributions to cognitive decline and hippocampal structure and function in healthy aging. Current Alzheimer Research, 9(4), 436446.
World Medical Association. (2008). Declaration of Helsinki. Ethical principles for medical research involving human subjects. Http://Www.Wma.Net/e/Policy/B3.Htm. Retrieved from http://ci.nii.ac.jp/naid/10021949345/
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the International Neuropsychological Society
  • ISSN: 1355-6177
  • EISSN: 1469-7661
  • URL: /core/journals/journal-of-the-international-neuropsychological-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Won et al. supplementary material
Won et al. supplementary material 1

 Word (17 KB)
17 KB
UNKNOWN
Supplementary materials

Won et al. supplementary material
Won et al. supplementary material 2

 Unknown (4.6 MB)
4.6 MB
UNKNOWN
Supplementary materials

Won et al. supplementary material
Won et al. supplementary material 3

 Unknown (4.5 MB)
4.5 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed