A complex valued function $g$, defined on the positive integers, is multiplicative if it satisfies $g(ab) = g(a)g(b)$ whenever the integers $a$ and $b$ are mutually prime.
THEOREM 1. Let$D$be an integer, $2 \le D \le x, \varepsilon > 0$. Let$g$be a multiplicative function with values in the complex unit disc.
There is a character$\chi_1({\rm mod}\, D)$, real if$g$is real, such that when$0 < \gamma < 1$, \[\sum_{\overset{n \le y}{n\equiv a({\rm mod}\, D)}} g(n)- \frac{1}{\phi(D)}\sum_{\overset{n\le y}{(n,D)=1)}} g(n)-\frac{\overline{\chi_1(a)}}{\phi(D)} \sum_{n\le y} g(n)\chi_1(n) \ll \frac{y}{\phi(D)} \left(\frac{\log D}{\log y}\right)^{1/4-\varepsilon} \]uniformly for$(a, D) = 1, D \le y, x^\gamma \le y \le x$, the implied constant depending at most upon$\varepsilon, \gamma$.