Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-10-06T13:26:58.616Z Has data issue: false hasContentIssue false

Feeding patterns in seagrass beds of three-spined stickleback Gasterosteus aculeatus juveniles at different growth stages

Published online by Cambridge University Press:  11 May 2015

A. Demchuk*
Affiliation:
Department of Ichthyology and Hydrobiology, Biology Faculty, Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
M. Ivanov
Affiliation:
Department of Ichthyology and Hydrobiology, Biology Faculty, Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
T. Ivanova
Affiliation:
Department of Ichthyology and Hydrobiology, Biology Faculty, Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
N. Polyakova
Affiliation:
Department of Ichthyology and Hydrobiology, Biology Faculty, Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
E. Mas-Martí
Affiliation:
Departament d'Ecologia, Universitat de Barcelona (UB), Av. Diagonal, 643, 08028 Barcelona, Catalonia, Spain
D. Lajus
Affiliation:
Department of Ichthyology and Hydrobiology, Biology Faculty, Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
*
Correspondence should be addressed to: A. Demchuk, Department of Ichthyology and Hydrobiology, Biology Faculty, Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia email: anndemch@gmail.com

Abstract

Today, three-spined stickleback Gasterosteus aculeatus are the most abundant fish in the White Sea and are close to their historical maximum. Based on observations from 2011–2013, this study reports quantitative and qualitative characteristics of juvenile stickleback diet during periods of active feeding in coastal Zostera seagrass beds. The following planktonic taxa dominated stomach contents: copepods Temora longicornis and Microsetella norvegica, ciliophora Helicostomella subulata. Benthic organisms such as Oligochaetae and Orthocladiinae also played an important role, whereas the literature suggests they were once rare in marine stickleback diets. Consumption patterns depended on fish size, with the most pronounced diet shift taking place as juveniles reached a length of 15 mm, in late August. In larger juveniles the highest correlation between the abundance of food organisms in stomachs and in the sea was observed for Orthocladiinae, suggesting that they are the preferred food. Overall, changes in diet followed changes in the abundance of available food organisms, but food selectivity analysis of planktonic organisms showed that M. norvegica were actively selected by juveniles.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdel-Malek, S.A. (1968) Feeding of three-spined stickleback (Gasterosteus aculeatus L.) juveniles of Kandalaksha Bay, in the White Sea. Voprosy ikhtiologii 2, 294302. [in Russian]Google Scholar
Amaoka, K. and Haruta, C. (1972) Threespine stickleback, Gasterosteus aculeatus, new record from Shimonoseki. Japanese Journal of Ichthyology 19, 129131.Google Scholar
Bakun, A. (2006) Wasp-waist populations and marine ecosystem dynamics: navigating the ‘‘predator pit’’ topographies. Progress in Oceanography 68, 271288.CrossRefGoogle Scholar
Balushkina, E.V. and Vinberg, G.G. (1979) Dependence between body mass and length in planktonic animals. In Vinberg, G.G. (ed) Obschie osnovy izuchenia vodnykh ekosistem. Leningrad: Nauka, pp. 169172.Google Scholar
Bell, M.A. (1984) Evolutionary phenetics and genetics. The threespine stickleback Gasterosteus aculeatus and related species. In Turner, B.J. (ed.) Evolutionary genetics of fish. New York, NY: Plenum Press, pp. 431528.CrossRefGoogle Scholar
Berg, L.S. (1949) Ryby presnykh vod SSSR i sopredel'nykh stran. Moscow and Leningrad: Academy of Sciences. [in Russian]Google Scholar
Brooks, J.L. and Dodson, I.S. (1965) Predation, body size, and composition of plankton. Science 150, 2835.CrossRefGoogle ScholarPubMed
Chislenko, L.L. (1968) Nomogrammy dlia opredelenia vesa vodnykh organizmov po razmeram i forme tela. Moscow: Nauka. [in Russian]Google Scholar
Costello, M.J. (1990) Predator feeding strategy and prey importance: a new graphical analysis. Journal of Fish Biology 36, 261263. doi: 10.1111/j.1095–8649.1990.tb05601.CrossRefGoogle Scholar
Cury, P., Bakun, A., Crawford, R.J.M., Jarre, A., Quinones, R.A., Shannon, L.J. and Verheye, H.M. (2000) Small pelagics in upwelling systems: patterns of interaction and structural changes in ‘‘wasp-waist’’ ecosystems. ICES Journal of Marine Science 57, 603618.CrossRefGoogle Scholar
Dalpadado, P., Ellertsen, B., Melle, W. and Dommasnes, A. (2000) Food and feeding conditions of Norwegian spring-spawning herring (Clupea harengus) through its feeding migrations. Journal of Marine Science 57, 843857.Google Scholar
Fauchald, P., Skov, H., Skern-Mauritzen, M., Johns, D. and Tveraa, T. (2011) Wasp-waist interactions in the North Sea ecosystem. PLoS ONE 6, e22729. doi: 10.1371/journal.pone.0022729.CrossRefGoogle ScholarPubMed
Filatov, N. and Terzhevik, A. (2007) Beloe more i ego vodosbor pod vlianiem klimaticheskikh i antropogennykh factorov [The White [Beloe] Sea and their watershed under influences of climate and anthropogenic impact]. Petrozavodsk: Rossiskaya Akademia nauk, Karelsky nauchny Tsentr, Institut vodnykh problem Severa. [in Russian]Google Scholar
Hangelin, C. and Vuorinen, I. (1988) Food selection in juvenile three-spined sticklebacks studied in relation to size, abundance and biomass of prey. Hydrobiologia 157, 169177.CrossRefGoogle Scholar
Hansen, M.J. and Wahl, D.H. (1981) Selection of small Daphnia pulex by yellow perch fry in Oneida Lake, New York. Transactions of the American Fisheries Society 110, 6471. doi: 10.1577/1548-8659(1981)110<64:SOSDPB>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Hemminga, M.A. and Duarte, C.M. (2000) Seagrass ecology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Holt, R.D. and Keitt, T.H. (2005) Species’ borders: a unifying theme in ecology. Oikos 108, 36.CrossRefGoogle Scholar
Hynes, H.B.N. (1950) The food of fresh-water sticklebacks (Gasterosteus aculeatus and Pygosteus pungitius), with a review of methods used in studies of the food of fishes. Journal of Animal Ecology 19, 3538.CrossRefGoogle Scholar
Hyslop, E.J. (1980) Stomach contents analysis: a review of methods and their application. Journal of Fish Biology 17, 411429.CrossRefGoogle Scholar
IPCC (2014) Summary for policymakers. In Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R. and White, L.L. (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 132.Google Scholar
Ivlev, V.S. (1961) Experimental ecology of the feeding of fishes. New Haven, CT: Yale University Press.Google Scholar
Jackson, J.B.C., Kirby, M.X., Berger, W.H., Bjorndal, K.A., Botsford, L.W., Bourque, B.J., Bradbury, R.H., Cooke, R., Erlandson, J., Estes, J.A., Hughes, T.P., Kidwell, S., Lange, C.B., Lenihan, H.S., Pandolfi, J.M., Peterson, C.H., Steneck, R.S., Tegner, M.J. and Warner, R.R. (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629638.Google Scholar
Lajus, D.L., Ivanova, T.S., Ivanov, M.V. and Shatskikh, E.V. (2011) Waves of life of stickleback in the White Sea. In Maksimovich, N.V. (ed) Materialy 8 nauchnogo seminara “Chtenia pamiati K.M. Deriugina”. Kafedra ikhtiologii i gidrobiologii Sankt Petereburgskogo gosudarstvennogo universiteta. Sankt Petersburg: SPbGU, pp. 6498. [in Russian]Google Scholar
Lajus, D.L., Ivanova, T.S., Ivanov, M.V. and Shatskikh, E.V. (2013a) How many stickleback in the White Sea now. In Nemova, N.N., Murzina, S.A. and Mescheriakova, O.V. (eds) Problemy izuchenia, ratsionalnogo ispolzovania i okhrany prirodnykh resursov Belogo moria. XII Mezhdunarodnaya konferentsia s elementami shkoly dlia molodykh uchenykh i aspirantov. Sbornik materialov. Petrozavodsk: Karelsky nauchny tsentr RAN, pp. 185188. [in Russian]Google Scholar
Lajus, D.L., Ivanova, T.S., Shatskikh, E.V. and Ivanov, M.V. (2013b) “Waves of Life” of the White Sea stickleback. Priroda 4, 4352. [in Russian]Google Scholar
Lankov, A., Ojaveer, H., Simm, M., Pöllupüü, M. and Möllmann, C. (2010) Feeding ecology of pelagic fish species in the Gulf of Riga (Baltic Sea): the importance of changes in the zooplankton community. Journal of Fish Biology 77, 22682284.CrossRefGoogle ScholarPubMed
Lefebure, R., Larsson, S. and Bystrom, P. (2011) A temperature-dependent growth model for the three-spined stickleback Gasterosteus aculeatus. Journal of Fish Biology 79, 18151827.CrossRefGoogle ScholarPubMed
Lefébure, R., Larsson, S. and Byström, P. (2014) Temperature and size-dependent attack rates of the three-spined stickleback (Gasterosteus aculeatus); are sticklebacks in the Baltic Sea resource-limited? Journal of Experimental Marine Biology and Ecology 451, 8290.CrossRefGoogle Scholar
McIntyre, A.D. and Eleftheriou, A. (2005) Methods for the study of marine benthos. 3rd edition. Oxford: Blackwell.Google Scholar
Miller, R.R. and Hubbs, C.L. (1969) Systematics of Gasterosteus aculeatus with particular reference to intergradation and introgression along the Pacific coast of North America: a commentary on a recent contribution. Copeia 1, 5269.Google Scholar
Mollmann, C., Kornilovs, G., Fetter, M. and Koster, F.W. (2004) Feeding ecology of central Baltic Sea herring and sprat. Journal of Fish Biology 65, 15631581.CrossRefGoogle Scholar
Mukhomediarov, F.B. (1966) The three-spined stickleback of Kandalaksha Bay, in the White Sea. Voprosy ikhtiologii 3, 454467. [in Russian]. See also English translation: Mukhomediyarov F.B. The three spine stickleback (Gasterosteus aculeatus L.) of Kandalaksha in the White Sea. Voprosy ikhtiologii (“Problems of Ichthyology”). See translation Department of the Secretary of State Translation Bureau, Foreign languages division, No. 0114, Canada. Oct. 15, 1971. Available at http://www.dfo-mpo.gc.ca/Library/137592.pdf.Google Scholar
Pankratova, V.Ia (1970) Lichinki i kukolki podsemeistva Orthocladiinae fauny SSSR. Leningrad: Nauka. [in Russian]Google Scholar
Pertzova, N.M. (1967) Average weight and size of mass zooplankton species of the White Sea. Oceanologia 7, 309313. [in Russian]Google Scholar
Pertzova, N.M. (2000) Zooplankton of the White Sea. History of investigations and the present state of knowledge – a review. Reports on Polar Research 359, 3041. [in Russian]Google Scholar
Pertzova, N.M. and Kosobokova, K.N. (2002) Year-to-year variations of biomass and distribution of zooplankton in Kandalaksha Bay of the White Sea. Okeanologiia 42, 240248. [in Russian]Google Scholar
Prokopchuk, I. and Sentyabov, E. (2006) Diets of herring, mackerel, and blue whiting in the Norwegian Sea in relation to Calanus finmarchicus distribution and temperature conditions. Journal of Marine Science 63, 117127.Google Scholar
Rama, E. and Nuutinen, V. (1984) Zooplankton predation by rock-pool fish (Tinra tinea L. and Pungiiius pungiiius L.): an experimental study. Annales Zoologici Fennici 21, 441449.Google Scholar
Sánchez-Gonzáles, S.G., Ruiz-Campos, S. and Contreras-Balderas, S. (2001) Feeding ecology and habitat of the three-spine stickleback, Gasterosteus aculeatus microcephalus, in a remnant population of northwestern Baja California, Mexico. Ecology of Freshwater Fish 10, 191197.CrossRefGoogle Scholar
Shatskikh, E.V., Lajus, D.L. and Ivanova, T.S. (2010) Biotropical confinedness of the three-spined stickleback Gasterosteus aculeatus L. juveniles in natural and experimental conditions. Vestnik SPBGU. Seria 3. 4, 6170. [in Russian]Google Scholar
Short, J., Metaxas, A. and Daigle, R.M. (2013) Predation of larval benthic invertebrates in St George's Bay, Nova Scotia. Journal of the Marine Biological Association of the United Kingdom 93, 591599.CrossRefGoogle Scholar
Swarup, H. (1958) The reproductive cycle and development of the gonads in Gasterosteus aculeatus (L.). Proceedings of the Zoological Society of Bengal 11, 4761.Google Scholar
Trofimenko, E.V. (2013) Ryby pribrezhia Keretskogo arkhipelaga: rost, pitanie, dinamika chislennosti [Fishes of inshore area of Keret Archipelago: growth, feeding, population dynamics]. Bachelor thesis. St. Petersburg State University, St. Petersburg. [in Russian]Google Scholar
Vinberg, G.G. (1984) Metodicheskie recomendacii po sboru i obrabotke materialov pri gidrobiologicheskih issledovaniah na presnovodnih vodoyomah. Zooplankton i ego produkcia 1984, 2nd edition. Leningrad: GOSNIORH, ZIN AN SSSR. [in Russian]Google Scholar
Walkey, М. (1967) The ecology of Neoechinorhynchus rutili (Müller). Journal of Parasitology 53, 795804.CrossRefGoogle ScholarPubMed
Wootton, R.J. (1984) A functional biology of sticklebacks. London: Croom Helm.CrossRefGoogle Scholar
Ziuganov, V.V. (1991) Semeistvo koliushkovykh (Gasterosteidae) mirovoi fauny [Family Gasterosteidae of world fauna.]. Leningrad: Nauka. [in Russian]Google Scholar