Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-tqmtl Total loading time: 0.629 Render date: 2021-04-19T10:49:00.502Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

The role of physical variables in biodiversity patterns of intertidal macroalgae along European coasts

Published online by Cambridge University Press:  15 December 2016

Araceli Puente
Affiliation:
Environmental Hydraulics Institute, Universidad de Cantabria, Avda. Isabel Torres, 15, Parque Científico y Tecnológico de Cantabria, 39011, Santander, Spain
Xabier Guinda
Affiliation:
Environmental Hydraulics Institute, Universidad de Cantabria, Avda. Isabel Torres, 15, Parque Científico y Tecnológico de Cantabria, 39011, Santander, Spain
Jose A. Juanes
Affiliation:
Environmental Hydraulics Institute, Universidad de Cantabria, Avda. Isabel Torres, 15, Parque Científico y Tecnológico de Cantabria, 39011, Santander, Spain
Elvira Ramos
Affiliation:
Environmental Hydraulics Institute, Universidad de Cantabria, Avda. Isabel Torres, 15, Parque Científico y Tecnológico de Cantabria, 39011, Santander, Spain
Beatriz Echavarri-Erasun
Affiliation:
Environmental Hydraulics Institute, Universidad de Cantabria, Avda. Isabel Torres, 15, Parque Científico y Tecnológico de Cantabria, 39011, Santander, Spain
Camino F. De La Hoz
Affiliation:
Environmental Hydraulics Institute, Universidad de Cantabria, Avda. Isabel Torres, 15, Parque Científico y Tecnológico de Cantabria, 39011, Santander, Spain
Steven Degraer
Affiliation:
Royal Belgian Institute of Natural Sciences, Brussels and Ostende, Belgium
Francis Kerckhof
Affiliation:
Royal Belgian Institute of Natural Sciences, Brussels and Ostende, Belgium
Natalia Bojanić
Affiliation:
Institute of Oceanography and Fisheries, Split, Croatia
Maria Rousou
Affiliation:
Marine & Environmental Research Lab Ltd, Nicosia, Cyprus
Helen Orav-Kotta
Affiliation:
Estonian Marine Institute, University of Tartu, Tallinn, Estonia
Jonne Kotta
Affiliation:
Estonian Marine Institute, University of Tartu, Tallinn, Estonia
Jérôme Jourde
Affiliation:
Observatoire de la biodiversité (OBIONE), UMR 7266 LIttoral ENvironnement et Sociétés, CNRS/University of La Rochelle, France
Maria Luiza Pedrotti
Affiliation:
Sorbonne Universités, UPMC Univ. Paris 06, UMR 7093, LOV, Villefranche-sur-mer, France
Jean-Charles Leclerc
Affiliation:
Sorbonne Universités, UPMC Univ Paris 6, Station Biologique, Place Georges Teissier, Roscoff CNRS, UMR 7144, Station Biologique, Place Georges Teissier, Roscoff, France
Nathalie Simon
Affiliation:
Sorbonne Universités, UPMC Univ Paris 6, Station Biologique, Place Georges Teissier, Roscoff CNRS, UMR 7144, Station Biologique, Place Georges Teissier, Roscoff, France
Guy Bachelet
Affiliation:
Arcachon Marine Station, CNRS, Université de Bordeaux, EPOC, Arcachon, France
Nicolas Lavesque
Affiliation:
Arcachon Marine Station, CNRS, Université de Bordeaux, EPOC, Arcachon, France
Christos Arvanitidis
Affiliation:
Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
Christina Pavloudi
Affiliation:
Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
Sarah Faulwetter
Affiliation:
Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
Tasman P. Crowe
Affiliation:
School of Biology and Environmental Science and Earth Institute, University College Dublin, Ireland
Jennifer Coughlan
Affiliation:
School of Biology and Environmental Science and Earth Institute, University College Dublin, Ireland
Lisandro Benedetti Cecchi
Affiliation:
Department of Biology, University of Pisa, Pisa, CoNISMa, Italy
Martina Dal Bello
Affiliation:
Department of Biology, University of Pisa, Pisa, CoNISMa, Italy Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
Paolo Magni
Affiliation:
CNR, Institute for Coastal Marine Environment, Torregrande, Oristano, Italy
Serena Como
Affiliation:
CNR, Institute for Coastal Marine Environment, Torregrande, Oristano, Italy
Stefania Coppa
Affiliation:
CNR, Institute for Coastal Marine Environment, Torregrande, Oristano, Italy
Giuseppe Andrea De Lucia
Affiliation:
CNR, Institute for Coastal Marine Environment, Torregrande, Oristano, Italy
Tomas Rugins
Affiliation:
Marine Science and Technology Centre, Klaipeda University, Klaipeda, Lithuania
Emilia Jankowska
Affiliation:
Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, Sopot, Poland
Jan Marcin Weslawski
Affiliation:
Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, Sopot, Poland
Jan Warzocha
Affiliation:
National Marine Fisheries Research Institute, Gdynia, Poland
Teresa Silva
Affiliation:
Marine and Environmental Sciences Centre (MARE), Laboratório de Ciências do Mar, Universidade de Évora, Sines, Portugal
Pedro Ribeiro
Affiliation:
Departamento de Oceanografia e Pescas, MARE – Marine and Environmental Sciences Centre, Universidade dos Açores, Horta, Azores, Portugal Departamento de Oceanografia e Pescas, IMAR – Centre of the University of the Azores, 9901-862 Horta, Portugal
Valentina De Matos
Affiliation:
Departamento de Oceanografia e Pescas, MARE – Marine and Environmental Sciences Centre, Universidade dos Açores, Horta, Azores, Portugal Departamento de Oceanografia e Pescas, IMAR – Centre of the University of the Azores, 9901-862 Horta, Portugal
Isabel Sousa-Pinto
Affiliation:
CIIMAR, Interdisciplinary Centre for Marine and Environmental Research and University of Porto, Matosinhos, Portugal
Jesús Troncoso
Affiliation:
ECIMAT, Station of Marine Sciences of Toralla, Department of Ecology and Animal Biology, University of Vigo, Spain
Ohad Peleg
Affiliation:
National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
Gil Rilov
Affiliation:
National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
Free Espinosa
Affiliation:
Universidad de Sevilla, Sevilla, Spain
Angel Pérez Ruzafa
Affiliation:
Department of Ecology and Hydrology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Spain
Matt Frost
Affiliation:
Marine Biological Association, Plymouth, UK
Herman Hummel
Affiliation:
Monitor Taskforce, Royal Netherlands Institute for Sea Research, NIOZ, Yerseke, the Netherlands
Pim Van Avesaath
Affiliation:
Monitor Taskforce, Royal Netherlands Institute for Sea Research, NIOZ, Yerseke, the Netherlands
Corresponding
E-mail address:

Abstract

In the frame of the COST ACTION ‘EMBOS’ (Development and implementation of a pan-European Marine Biodiversity Observatory System), coverage of intertidal macroalgae was estimated at a range of marine stations along the European coastline (Subarctic, Baltic, Atlantic, Mediterranean). Based on these data, we tested whether patterns in macroalgal diversity and distribution along European intertidal rocky shores could be explained by a set of meteo-oceanographic variables. The variables considered were salinity, sea surface temperature, photosynthetically active radiation, significant wave height and tidal range and were compiled from three different sources: remote sensing, reanalysis technique and in situ measurement. These variables were parameterized to represent average conditions (mean values), variability (standard deviation) and extreme events (minimum and maximum values). The results obtained in this study contribute to reinforce the EMBOS network approach and highlight the necessity of considering meteo-oceanographic variables in long-term assessments. The broad spatial distribution of pilot sites has allowed identification of latitudinal and longitudinal gradients manifested through species composition, diversity and dominance structure of intertidal macroalgae. These patterns follow a latitudinal gradient mainly explained by sea surface temperature, but also by photosynthetically active radiation, salinity and tidal range. Additionally, a longitudinal gradient was also detected and could be linked to wave height.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

Anadón, R. (1983) Zonación en la costa asturiana: variacióon longitudinal de las comunidades de macrófitos en diferentes niveles de marea. Investigación Pesquera 45, 143156.Google Scholar
Apitz, S.E., Elliott, M., Fountain, M. and Galloway, T.S. (2006) European environmental management: moving to an ecosystem approach. Integrated Environmental Assessment and Management 2, 8085.CrossRefGoogle Scholar
Araújo, R.M., Assis, J., Aguillar, R., Airoldi, L., Bárbara, I., Bartsch, I., Bekkby, T., Christie, H., Davoult, D., Derrien-Courtel, S., Fernandez, C., Fredriksen, S., Gevaert, F., Gundersen, H., Le Gal, A., Lévêque, L., Mieszkowska, N., Norderhaug, K. M., Oliveira, P., Puente, A., Rico, J. M., Rinde, E., Schubert, H., Strain, E. M., Valero, M., Viard, F. and Sousa-Pinto, I. (2016) Status, trends and drivers of kelp forests in Europe: an expert assessment. Biodiversity Conservation 25, 13191348. doi: 10.1007/s10531-016-1141-7.CrossRefGoogle Scholar
Arévalo, R., Pinedo, S. and Ballesteros, E. (2007) Changes in the composition and structure of Mediterranean rocky-shore communities following a gradient of nutrient enrichment: descriptive study and test of proposed methods to assess water quality regarding macroalgae. Marine Pollution Bulletin 55, 104113.CrossRefGoogle ScholarPubMed
Ballantine, W.J. (1961) A biologically-defined exposure scale for the comparative description of rocky shores. Field Studies 1, 119.Google Scholar
Ballesteros, E. (1989) Production of seaweeds in Northwestern Mediterranean marine communities: its relation with environmental factors. Scientia Marina 53, 357364.Google Scholar
Benedetti-Cecchi, L., Bulleri, F. and Cinelli, F. (2000) The interplay of physical and biological factors in maintaining mid-shore and low-shore assemblages on rocky coasts in the north-west Mediterranean. Oecologia 123, 406417.CrossRefGoogle ScholarPubMed
Benedetti-Cecchi, L., Pannacciulli, F., Bulleri, F., Moschella, P. S., Airoldi, L., Relini, G. and Cinelli, F. (2001) Predicting the consequences of anthropogenic disturbance: large-scale effects of loss of canopy algae on rocky shores. Marine Ecology Progress Series 214, 137150.CrossRefGoogle Scholar
Benedetti-Cecchi, L., Tamburello, L., Maggi, E. and Bulleri, F. (2015) Experimental perturbations modify the performance of early warning indicators of regime shift. Current Biology 25, 18671872.CrossRefGoogle ScholarPubMed
Benedetti-Cecchi, L. and Trussell, G.C. (2014) Intertidal rocky shores. In Bertness, M.D., Bruno, J.F., Silliman, B.R. and Stachowicz, J.J. (eds) Marine community ecology and conservation. Sunderland, MA: Sinauer Associates, pp. 203225.Google Scholar
Breeman, A.M. (1988) Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: experimental and phonological evidence. Helgolander Meeresunters 42, 199241.CrossRefGoogle Scholar
Briggs, D., Smithson, P., Addison, K. and Atkinson, K. (1997) Fundamentals of the physical environment, 2nd edition. London: Routledge.Google Scholar
Cefalì, M.E., Cebrian, E., Chappuis, E., Pinedo, S., Terradas, M., Mariani, S. and Ballesteros, E. (2016) Life on the boundary: environmental factors as drivers of habitat distribution in the littoral zone. Estuarine, Coastal and Shelf Science 172, 8192.CrossRefGoogle Scholar
Chappuis, E., Terradas, M., Cefalì, M.E., Mariani, S. and Ballesteros, E. (2014) Vertical zonation is the main distribution pattern of littoral assemblages on rocky shores at a regional scale. Estuarine Coastal and Shelf Science 147, 113122.CrossRefGoogle Scholar
Cid, A., Castanedo, S., Abascal, A.J., Menéndez, M. and Medina, R. (2014) A high resolution hindcast of the meteorological sea level component for Southern Europe: the GOS dataset. Climate Dynamics 43, 118.CrossRefGoogle Scholar
Clarke, K.R. and Gorley, R.N. (2015) PRIMER v7: user manual/tutorial. Plymouth: PRIMER-E.Google Scholar
Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Lasram, F.B.R., Aguzzi, J., Ballesteros, E., Bianchi, C.N., Corbera, J., Dailianis, T., Danovaro, R., Estrada, M., Froglia, C., Galil, B.S., Gasol, J.M., Gertwage, R., Gil, J., Guilhaumon, F., Kesner-Reyes, K., Kitsos, M.S., Koukouras, A., Lampadariou, N., Laxamana, E., de la Cuadra, C.M.L.F., Lotze, H.K., Martin, D., Mouillot, D., Oro, D., Raicevich, S., Rius-Barile, J., Saiz-Salinas, J.I., Vicente, C.S., Somot, S., Templado, J., Turon, X., Vafidis, D., Villanueva, R. and Voultsiadou, E. (2010) The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE 5, e11842.CrossRefGoogle ScholarPubMed
Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P. and van den Belt, M. (1997) The value of the world's ecosystem services and natural capital. Nature 387, 253260.CrossRefGoogle Scholar
Costello, M.J., Bouchet, P., Boxshall, G., Fauchald, K., Gordon, D., Hoeksema, B.W., Poore, G.C.B., van Soest, R.W.M., Stöhr, S., Walter, T.C., Vanhoorne, B., Decock, W. and Appeltans, W. (2013) Global coordination and standardisation in marine biodiversity through the World Register of Marine Species (WoRMS) and related databases. PLoS ONE 8, e51629. doi: 10.1371/journal.pone.0051629. CrossRefGoogle ScholarPubMed
Dal Bello, M., Leclerc, J. C., Benedetti-Cecchi, L., Arvanitidis, C., van Avesaath, P., Bachelet, G., Bojanic, N., Como, S., Coppa, S., Crowe, T., Coughlan, J., Degraer, S., Espinosa, F., Faulwetter, S., Frost, M., Guinda, X., Ikauniece, A., Jankowska, E., Jourde, J., Kerckhof, F., Kotta, J., Lavesque, N., de Lucia, A., Magni, P., Fernandes de Matos, V.K., Orav-Kotta, H., Pavloudi, C., Pedrotti, M.L., Peleg, O., Juanes de la Pena, J.A., Puente, A., Ribeiro, P., Rilov, G., Rousou, M., Ruginis, T., Ruzafa, A., Silva, T., Simon, N., Sousa-Pinto, I., Troncoso, J., Warzocha, J., Weslawski, J.M. and Hummel, H. (2016) Consistent patterns of spatial variability between NE Atlantic and Mediterranean rocky shores. Journal of the Marine Biological Association of the United Kingdom. doi: 10.1017/S0025315416001491.Google Scholar
de Barbosa Araujo, C.C., Atkinson, P.M. and Dearing, J.A. (2015) Remote sensing of ecosystem services: a systematic review. Ecological Indicators 52, 430443.CrossRefGoogle Scholar
Díez, I., Secilla, A., Santolaria, A. and Gorostiaga, J.M. (1999) Phytobenthic intertidal community structure along an environmental pollution gradient. Marine Pollution Bulletin 38, 463472.CrossRefGoogle Scholar
EEA. The European environment – state and outlook 2010 (2010) Marine and coastal environment. Copenhagen: European Environment Agency, 258 pp.Google Scholar
Egbert, G.D., Bennett, A.F. and Foreman, M.G.G. (1994) TOPEX/POSEIDON tides estimated using a global inverse model. Journal of Geophysical Research: Oceans 99, 2482124852.CrossRefGoogle Scholar
Egbert, G.D. and Erofeeva, S.Y. (2002) Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology 19, 183204.2.0.CO;2>CrossRefGoogle Scholar
Escaravage, V., Herman, P.M.J., Merckx, B., Wlodarska-Kowalczuk, M., Amouroux, J.M., Degraer, S., Grémare, A., Heip, C.H.R., Hummel, H., Karakassis, I., Labrune, C. and Willems, W. (2009) Distribution patterns of macrofaunal species diversity in subtidal soft sediments: biodiversity–productivity relationships from the MacroBen database. Marine Ecology Progress Series, 382, 253264.CrossRefGoogle Scholar
Fraga, F. (1981) Upwelling off the Galician Coast, Northwest Spain. In Richards, F.A. (ed.) Coastal upwelling. Coastal and Estuarine Science. Washington, DC: American Geophysical Union, pp. 176182.CrossRefGoogle Scholar
GBIF (2013) GBIF Backbone Taxonomy, 2013-07-01. [WWW Document]. Available at http://www.gbif.org/species/5328663 on 2016-01-27 (accessed 23 June 2015).Google Scholar
Guidetti, P., Bianchi, C.N., Chiantore, M., Schiaparelli, S., Morri, C. and Cattaneo-Vietti, R. (2004) Living on the rocks: substrate mineralogy and the structure of subtidal rocky substrate communities in the Mediterranean Sea. Marine Ecology Progress Series 274, 5768.CrossRefGoogle Scholar
Hanelt, D., Huppertz, K. and Nultsch, W. (1993) Daily courses of photosynthesis and photo-inhibition in marine macroalgae investigated in the laboratory and field. Marine Ecology Progress Series 97, 3137.CrossRefGoogle Scholar
Heip, C., Hummel, H., van Avesaath, P., Appeltans, W., Arvanitidis, C., Aspden, R., Austen, M., Boero, F., Bouma, T.J., Boxshall, G., Buchholz, F., Crowe, T., Delaney, A., Deprez, T., Emblow, C., Feral, J.P., Gasol, J.M., Gooday, A., Harder, J., Ianora, A., Kraberg, A., Mackenzie, B., Ojaveer, H., Paterson, D., Rumohr, H., Schiedek, D., Sokolowski, A., Somerfield, P., Sousa Pinto, I., Vincx, M., Weslawski, J.M. and Nash, R. (2009) Marine biodiversity and ecosystem functioning. Dublin: Printbase. ISSN 2009–2539, 91 pp.Google Scholar
Hoegh-Guldberg, O. and Bruno, J.F. (2010) The impact of climate change on the world's marine ecosystems. Science 328, 15231528.CrossRefGoogle ScholarPubMed
Hummel, H., van Avesaath, P., Wijnhoven, S., Kleine-Schaars, L., Degraer, S., Kerckhof, F., Bojanic, N., Skejic, S., Vidjak, O., Rousou, M., Orav-Kotta, H., Kotta, J., Jourde, J., Pedrotti, M.L., Leclerc, J., Simon, N., Rigaut-Jalabert, F., Bachelet, G., Lavesque, N., Arvanitidis, C., Pavloudi, C., Faulwetter, S., Crowe, T., Coughlan, J., Benedetti-Cecchi, L., Dal Bello, M., Magni, P., Como, S., Coppa, S., Ikauniece, A., Ruginis, T., Jankowska, E., Weslawski, J.M., Warzocha, J., Gromisz, S., Witalis, B., Silva, T., Ribeiro, P., Fernandes de Matos, V.K., Sousa-Pinto, I., Veiga, P., Troncoso, J., Guinda, X., Juanes de la Pena, J.A., Puente, A., Espinosa, F., Pérez-Ruzafa, A., Frost, M., McNeill, C.L., Peleg, O. and Rilov, G. (2016) Geographic patterns of biodiversity in European coastal marine benthos. Journal of the Marine Biological Association of the United Kingdom. doi: 10.1017/S0025315416001119.Google Scholar
Jakobsen, F. (1997) Hydrographic investigation of the Northern Kattegat front. Continental Shelf Research 17, 533554.CrossRefGoogle Scholar
Juanes, J.A., Puente, A. and Ramos, E. (2016) A global approach to hierarchical classification of coastal waters at different spatial scales: the NEA case. Journal of the Marine Biological Association of the United Kingdom. doi: 10.1017/S0025315416000801.Google Scholar
Konar, B., Iken, K., Cruz-Motta, J.J., Benedetti-Cecchi, L., Knowlton, A., Pohle, G., Miloskavich, P., Edwards, M., Trott, T., Kimani, E., Riosmena-Rodriguez, R., Wong, M., Jenkins, S., Silva, A., Sousa Pinto, I. and Shirayama, Y. (2010) Current patterns of macroalgal diversity and biomass in northern hemisphere rocky shores. PLoS ONE 5, e13195.CrossRefGoogle ScholarPubMed
Kotta, J., Orav-Kotta, H., Jänes, H., Hummel, H., Arvanitidis, C., Van Avesaath, P., Bachelet, G., Benedetti-Cecchi, L., Bojanic, N., Como, S., Coppa, S., Coughlan, J., Crowe, T., Dal Bello, M., Degraer, S., Juanes De La Pena, J.A., Fernandes De Matos, V.K., Espinosa, F., Faulwetter, S., Frost, M., Guinda, X., Ikauniece, A., Jankowska, E., Jourde, J., Kerckhof, F., Lavesque, N., Leclerc, J., Magni, P., Pavloudi, C., Pedrotti, M.L., Peleg, O., Pérez-Ruzafa, A., Puente, A., Ribeiro, P., Rilov, G., Rousou, M., Ruginis, T., Silva, T., Simon, N., Sousa-Pinto, I., Troncoso, J., Warzocha, J. and Weslawski, J.M. (2016) Essence of the patterns of cover and richness of intertidal hard bottom communities: a pan-European study. Journal of the Marine Biological Association of the United Kingdom. doi: 10.1017/S0025315416001351.Google Scholar
Levin, S.A., and Paine, R.T. (1974) Disturbance, patch formation, and community structure. Proceedings of the National Academy of Sciences USA 71, 27442747.CrossRefGoogle ScholarPubMed
Levitus, S., Antonov, J.I., Baranova, O.K., Boyer, T.P., Coleman, C.L., Garcia, H.E., Grodsky, A.I., Johnson, D.R., Locarnini, R.A., Mishonov, A.V., Reagan, J.R., Sazama, C.L., Seidov, D., Smolyar, I., Yarosh, E.S. and Zweng, M.M. (2013) The world ocean database. In Special Issue of the Proceedings of the 1st WDS Conference in Kyoto, 3–6 September 2011, Kyoto University, Kyoto, Japan. Data Science Journal v.3, 229234.Google Scholar
Lewis, J.R. (1955) The mode of occurrence of the universal intertidal zones in Great Britain. Journal of Ecology 43, 270290.CrossRefGoogle Scholar
Lüning, K. (1990) Seaweed vegetation of the cold and warm temperate regions of the northern hemisphere. In Yarish, C. and Kirkman, H. (eds) Seaweeds: their environment, biogeography, and ecophysiology., New York, NY: John Wiley & Sons, pp. 22163.Google Scholar
Nishihara, G.N. and Terada, R. (2010) Species richness of marine macrophytes is correlated to a wave exposure gradient. Phycological Research 58, 280292.CrossRefGoogle Scholar
Nybakken, J.W. (1997) Intertidal ecology. In Pusateri, C. (ed.) Marine biology: an ecological approach. Reading, MA: Addison-Wesley Educational Publishers.Google Scholar
OBIS (2015) The OBIS Web Portal search interface [www Document]. Available at http://iobis.org/mapper/ (accessed 23 June 2015).Google Scholar
Philippart, C.J.M., Anadón, R., Danovaro, R., Dippner, J.W., Drinkwater, K.F., Hawkins, S.J., Oguz, T., O'Sullivan, G. and Reid, P.C. (2011) Impacts of climate change on European marine ecosystems: observations, expectations and indicators. Journal of Experimental Marine Biology and Ecology 400, 5269.CrossRefGoogle Scholar
Puente, A. and Juanes, J.A. (2008) Testing taxonomic resolution, data transformation and selection of species for monitoring macroalgae communities. Estuarine, Coastal and Shelf Science 78, 327340.CrossRefGoogle Scholar
Ramos, E., Díaz de Terán, J.R., Puente, A. and Juanes, J. (2016a) The role of geomorphology in the distribution of intertidal rocky macroalgae in the NE Atlantic region. Estuarine, Coastal and Shelf Science 179, 9098. doi: 10.1016/j.ecss.2015.10.007.CrossRefGoogle Scholar
Ramos, E., Juanes, J.A., Galván, C., Neto, J.M., Melo, R., Pedersen, A., Scanlan, C., Wilkes, R., van den Bergh, E., Blomqvist, M., Karup, H.P., Heiber, W., Reitsma, J.M., Ximenes, M.C., Silió, A., Méndez, F. and González, B. (2012) Coastal waters classification based on physical attributes along the NE Atlantic region. An approach for rocky macroalgae potential distribution. Estuarine, Coastal and Shelf Science 112, 105114.CrossRefGoogle Scholar
Ramos, E., Puente, A., Guinda, X. and Juanes, J.A. (2016b) A hierarchical classification system along the NE Atlantic coast: focusing on the local scale (Cantabria, N Spain). European Journal of Phycology. http://dx.doi.org/10.1080/09670262.2016.1221469.Google Scholar
Ramos, E., Puente, A. and Juanes, J. (2016c) An ecological classification of rocky shores at a regional scale: a predictive tool for management of conservation values. Marine Ecology. doi: 10.1111/maec.12280. CrossRefGoogle Scholar
Ramos, E., Puente, A., Juanes, J.A., Neto, J.M., Pedersen, A., Bartsch, I., Scanlan, C., Wilkes, R., van den Bergh, E., Ar Gall, E. and Melo, R. (2014) Biological validation of physical coastal waters classification along the NE Atlantic region based on rocky macroalgae distribution. Estuarine, Coastal and Shelf Science 147, 103112.CrossRefGoogle Scholar
Reguero, B.G., Menéndez, M., Méndez, F.J., Mínguez, R. and Losada, I.J. (2012) A Global Ocean Wave (GOW) calibrated reanalysis from 1948 onwards. Coastal Engineering 65, 3855.CrossRefGoogle Scholar
Sherman, K. (1986) Introduction to parts one and two: large marine ecosystems as tractable entities for measurement and management. In Sherman, K. and Alexander, L.M. (eds) Variability and management of large marine ecosystems. AAAS Selected Symposium 99. Boulder, CO: Westview Press, pp. 37.Google Scholar
Stark, J.D., Donlon, C.J., Martin, M.J. and McCulloch, M.E. (2007) OSTIA: an operational, high resolution, real time, global sea surface temperature analysis system. In Conference proceedings OCEANS 2007. Marine challenges: coastline to deep sea. Aberdeen, Scotland, 18 June – 21 June 2007. IEE, pp. 14.Google Scholar
Steneck, R.S., Graham, M.H., Bourque, B.J., Bruce, J., Corbett, D., Erlandson, J.M., Estes, J.A. and Tegner, M.J. (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environmental Conservation 29, 436459.CrossRefGoogle Scholar
Thibaut, T., Blanfuné, A., Markovic, L., Verlaque, M., Boudouresque, C.F., Perret-Boudouresque, M., Maćic, V. and Bottin, L. (2014) Unexpected abundance and long-term relative stability of the brown alga Cystoseira amentacea, hitherto regarded as a threatened species, in the north-western Mediterranean Sea. Marine Pollution Bulletin 89, 305323.CrossRefGoogle ScholarPubMed
Tolman, H.L. (2014) User manual and system documentation of WAVEWATCH III version 4.18. NOAA/NWS/NCEP/MMAB Contribution No. 316, 311 pp.Google Scholar
van den Hoek, C. (1982a) Phytogeographic distribution groups of benthic marine algae in the North Atlantic Ocean. A review of experimental evidence from life history studies. Helgoländer Meeresunters 35, 153214.CrossRefGoogle Scholar
van den Hoek, C. (1982b) The distribution of benthic marine algae in relation to the temperature regulation of their life histories. Biological Journal of the Linnean Society 18, 81144.CrossRefGoogle Scholar
Wahl, M., Molis, M., Davis, A., Dobretsov, S., Dürr, S.T., Johansson, J., Kinley, J., Kirugara, D., Langer, M., Lotze, H.K., Thiel, M., Thomasson, J.C., Worm, B. and Zeevi Ben-Yosef, D. (2004) UV effects that come and go: a global comparison of marine benthic community level impacts. Global Change Biology 10, 19621972.CrossRefGoogle Scholar
Wallenstein, F.F.M.M. and Neto, A.I. (2006) Intertidal rocky shore biotopes of the Azores: a quantitative approach. Helgoland Marine Research 60, 196206.CrossRefGoogle Scholar
Wallentinus, I. (1991) The Baltic Sea gradient. In Mathieson, A.C. and Nienhus, P.H. (eds) Intertidal and littoral ecosystems. Amsterdam: Elsevier, pp. 83108.Google Scholar

Puente supplementary material

Puente supplementary material 1

File 16 KB

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 32
Total number of PDF views: 176 *
View data table for this chart

* Views captured on Cambridge Core between 15th December 2016 - 19th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The role of physical variables in biodiversity patterns of intertidal macroalgae along European coasts
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The role of physical variables in biodiversity patterns of intertidal macroalgae along European coasts
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The role of physical variables in biodiversity patterns of intertidal macroalgae along European coasts
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *