Hostname: page-component-59f8fd8595-gl4p7 Total loading time: 0 Render date: 2023-03-22T15:46:54.189Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Spatial and temporal distribution and recruitment of echinoderm larvae in the Ligurian Sea

Published online by Cambridge University Press:  11 May 2009

M. L. Pedrotti
Observatoire des Sciences de l'Univers, Laboratoire d'Ecologie du Plancton Marin, Station Zoologique URA CNRS 716, Université Paris 6, INSU La Darse, 06230 Villefranche-sur-Mer, France Correspondence address: Station Zoologique, BP 28, 06320-Villefranche-sur-Mer, France


Seasonal and annual variations in the distribution and abundance of echinoderm larvae (early to post-larvae of principally echinoids and ophiuroids), were determined from a series of plankton net tows taken at three stations in the Bay of Villefranche (France) and along a radial transect of 28 nautical miles (52 km), from the Bay to half-way to Corsica, between 1984 and 1988. Spatial distribution of six echinoderm species have been mapped. For the echinoids, Paracentrotus lividus and Arbacia lixula, spawning takes place twice a year and appears to be synchronous because larval cohorts were comprised of distinct age-classes both near and far from the coast. Recruitment for these species is, therefore, thought to occur at well-defined periods. In contrast, the ophiuroid species studied (Amphiura filiformis, Ophwthrix fragilis, Ophiopluteus bimaculatus and O. compressus) spawn several times per year with a relatively short period in late spring and a prolonged spawning between the end of autumn and winter. These later results are consistent with the presence of mixed size-classes of larvae either from the nearby coast or offshore. Recruitment for these ophiuroids appears to be much more variable and spread over time.

Research Article
Copyright © Marine Biological Association of the United Kingdom 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Bethoux, J. P., Prieur, L. & Bong, J. H., 1988. Le courant Ligure au large de Nice. Oceanologica Acta, special issue no. 9, 5967.Google Scholar
Boucher, J., Ibanez, F. & Prieur, L., 1987. Daily and seasonal variations in the spatial distribution of zooplankton populations in relation to the physical structure in the Ligurian Sea front. journal of Marine Research, 45, 133173.CrossRefGoogle Scholar
Bougis, P., 1967. Utilisation des plutéus en écologie expérimentale. Helgoländer Wissenschaftliche Meersuntersuchungen, 15, 5968.CrossRefGoogle Scholar
Bowmer, T., 1982. Reproduction in Amphiura filiformis (Echinodermata: Ophiuroidea): seasonality in gonad development. Marine Biology, 69, 281290.CrossRefGoogle Scholar
Buchanan, J. B., 1967. Dispersion and demography of some infaunal echinoderm populations. Symposia of the Zoological Society of London, 20, 111.Google Scholar
Cameron, R. A. & Hinegardner, R. T., 1974. Initiation of metamorphosis in laboratory cultured sea urchins. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 146, 335342.CrossRefGoogle ScholarPubMed
Claustre, H., Marty, J.-C. & Cassiani, L., 1989. Intraspecific differences in the biochemical composition of a diatom during a spring bloom in Villefranche-sur-Mer Bay, Mediterranean Sea. Journal of Experimental Marine Biology and Ecology, 129, 1732.CrossRefGoogle Scholar
Davoult, D., Gounin, F. & Richard, A., 1990. Dynamique et reproduction de la population d'Ophiothrix fragilis (Abildgaard) du détroit du Pas-de-Calais (Manche orientale). Journal of Experimental Marine Biology and Ecology, 138, 201216.CrossRefGoogle Scholar
Doyle, R. W., 1975. Settlement of planktonic larvae: a theory of habitat selection in varying environments. American Naturalist, 109, 113126.CrossRefGoogle Scholar
Ebert, T. A., 1983. Recruitment in echinoderms. In Echinoderm studies. Vol. 1 (ed. Jangoux, M. and Lawrence, J. M.), pp. 169203. Rotterdam: A.A. Balkema.Google Scholar
Eckman, J. E., 1983. Hydrodynamic processes affecting benthic recruitment. Limnology and Oceanography, 28, 241257.CrossRefGoogle Scholar
Eckman, J. E., 1987. The role of hydrodynamics in recruitment, growth, and survival of Argopecten irradians (L.) and Anomia simplex (D'Orbigny) within eelgrass meadows. Journal of Experimental Marine Biology and Ecology, 106, 165191.CrossRefGoogle Scholar
Fenaux, L., 1963. Note préliminaire sur le développement larvaire de Amphiura chiajei (Forbes). Vie et Milieu, 14, 9196.Google Scholar
Fenaux, L., 1968. Maturation des gonades et cycle saisonnier des larves chez Arbacia lixula, Paracentrotus lividus et Psammechinus microtuberculatus (Echinides) à Villefranche-sur-Mer. Vie et Milieu, 19, 152.Google Scholar
Fenaux, L., 1969. Les échinoplutéus de la Méditerranée. Bulletin de l'Institut Océanographique. Monaco, 68, no. 1394, 128.Google Scholar
Fenaux, L., 1972. Contribution a la connaissance des larves de Spatangides en Mediterranée: Echinocardium mediterraneum (Forb.) et Spatangus purpureus (O.F.M.). Bulletin du Museum National d'Histoire Naturelle. Paris, 3ème série, Zoologie, 25, 297304.Google Scholar
Fenaux, L., Cellario, C. & Claustre, H., 1987. Développement larvaire de P. lividus (Lamarck) dans des conditions de bloom phytoplanctonique. In Bulletin de la Société des Sciences Naturelles, de l'Ouest de France. 5e Séminaire International sur les Echinodermes Actuels et Fossils, supplement, hors-série, p. 83.Google Scholar
Fenaux, L., Cellario, C. & Greff, Y. De, 1992. Effets du retard de la première alimentation sur le développement de la larve planctotrophe de Paracentrotus lividus (Echinodermata: Echinoidea). Internationale Revue der Gesamten Hydrobiologie, 77, 651663.CrossRefGoogle Scholar
Fenaux, L., Cellario, C. & Rassoulzadegan, F., 1988. Sensitivity of different morphological stages of the larva of Paracentrotus lividus (Lamarck) to quantity and quality of food. In Echinoderm biology (ed. Burke, R. al.), pp. 259266. Rotterdam: A. A. Balkema.Google Scholar
Fenaux, L. & Pedrotti, M. L., 1988. Métamorphose des larves d'Echinides en pleine eau. Pubblicazioni della Stazione Zoologica di Napoli, I Marine Ecology, 9, 93107.CrossRefGoogle Scholar
Glémarec, M. & Menesguen, A., 1980. Functioning of a muddy sand ecosystem: seasonal fluctuations of different trophic levels and difficulties in estimating production of the dominant macrofauna species. In Marine benthic dynamics (ed. Tenore, K. R. and Coull, B. C.), pp. 4968. Columbia: University of South Carolina.Google Scholar
Guille, A., 1964. Contribution a l'étude de la systématique et de l'écologie d'Ophiothrix auinauemata d. Ch. Vie et Milieu, 15, 243308.Google Scholar
Highsmith, R. C., 1985. Floating and algal rafting as potential dispersal mechanisms in brooding invertebrates. Marine Ecology Progress Series, 25, 169179.CrossRefGoogle Scholar
Himmelman, J. H., 1981. Synchronization of spawning in marine invertebrates by phytoplankton. In Advances in invertebrate reproduction, Proceedings of the Second International Symposium of the International Society of Invertebrate Reproduction (ed. Clark, W. J. Jr and Adams, T. S.), pp. 19. New York: Elsevier.Google Scholar
Jackson, G. A., 1986. Interaction of physical and biological processes in the settlement of planktonic larvae. Bulletin of Marine Science, 39, 202212.Google Scholar
Jackson, G. A. & Strathmann, R. R., 1981. Larval mortality from offshore mixing as a link between precompetent and competent periods of development. American Naturalist, 118, 1626.CrossRefGoogle Scholar
Keough, M. & Downes, B. J., 1982. Recruitment of marine invertebrates: the role of active larval choices and early mortality. Oecologia, 54, 348352.CrossRefGoogle ScholarPubMed
Macbride, E. W., 1907. Development of Ophiothrixfragilis. Quarterly journal of Microscopical Science, series 2, 51, 557– 606.Google Scholar
Mileikovsky, S.A., 1971. Types of larval development in marine bottom invertebrates, their distribution and ecological significance: a re-evaluation. Marine Biology, 10, 193213.CrossRefGoogle Scholar
Mortensen, Th., 1898. Die Echinodermen larven der plankton-expedition. In Ergebnisse der Plankton-Expedition der Humboldt-Stiftung. Band II, J, 120 pp.Google Scholar
Mortensen, Th., 1901. Die Echinodermen-Larven. In Nordisches plankton (ed. Brandt, K. and Apstein, C.), 1(9), 130. Kiel & Leipzig: Lipsius & Tischer.Google Scholar
Mortensen, Th., 1927. Handbook of the echinoderms of the British Isles. Oxford: Oxford University Press.CrossRefGoogle Scholar
Mortensen, Th., 1931. Contributions to the study of the development and larval forms of Echinoderms. I-II. Kongelige Danske Videnskabernes Selskab Skrifter Naturvidenskabelig og Mathematisk Afdeling. Raekke 9, 4(1), 139.Google Scholar
Mortensen, Th., 1937. Contributions to the study of the development and larval forms of Echinoderms. III. Kongelige Danske Videnskabernes Selskab Skrifter Naturvidenskabelig og Mathematisk Afdeling. Raekke, 9, 7(1), 165.Google Scholar
Mortensen, Th., 1938. Contributions to the study of the development and larval forms of Echinoderms. IV. Kongelige Danske Videnskabernes Selskab Skrifter Naturvidenskabelig og Mathematisk Afdeling. Raekke, 9, 7(3), 159.Google Scholar
Motoda, S., 1959. Devices of sample plankton apparatus. Memoirs of the Faculty of Fisheries, Hokkaido University, 7, 7394.Google Scholar
Müller, J., 1852. Über die ophiurenlarve des Adriatischen meeres. Berlin: Dummler.Google Scholar
Muus, K., 1981. Density and growth of juvenile Amphiura filiformis (Ophiuroidea) in the Øresund. Ophelia, 20, 153168.CrossRefGoogle Scholar
Ockelmann, K. W. & Muus, K., 1978. The biology, ecology and behaviour of the bivalve Mysella bidentata (Montagu). Ophelia, 17, 193.CrossRefGoogle Scholar
Olson, R. R. & Olson, M. H., 1989. Food limitation of planktotrophic marine invertebrate larvae: does it control recruitment success? Annual Review of Ecology and Systematics, 20, 225247.CrossRefGoogle Scholar
Palmer, A. R. & Strathmann, R. R., 1981. Scale of dispersal in varying environments and its implications for life histories of marine invertebrates. Oecologia, 48, 308318.CrossRefGoogle ScholarPubMed
Pedrotti, M. L., 1990. Etude des processus biologiques etfacteurs physiques responsables de la dispersion et du recrutement des larves méroplanctoniques. Modèle: les larves d'Echinodermes. PhD dissertation, Université P. et M. Curie, Paris.Google Scholar
Pedrotti, M. L. & Fenaux, L., 1992. Dispersal of echinoderm larvae in a geographical area marked by upwelling (Ligurian Sea, NW Mediterranean). Marine Ecology Progress Series, 86, 217227.CrossRefGoogle Scholar
Pedrotti, M. L. & Fenaux, L., in press. Effects of food diet on the survival, development and growth rates of two cultured echinoplutei (Paracentrotus lividus and Arbacia lixula). International Journal of Invertebrate Reproduction and Development.Google Scholar
Pennington, J. T., 1985. The ecology of fertilization of echinoid eggs: the consequences of sperm dilution, adult aggregation, and synchronous spawning. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 169, 417430.CrossRefGoogle ScholarPubMed
Pressoir, L., 1959. Contribution à la connaissance des échinoplutéus de Paracentrotus lividus Lmck., et Psammechinus microtuberculatus Blainv. Bulletin de l'Institut Océanographique. Monaco, no. 1142, 22 pp.Google Scholar
Rees, C. B., 1953. The larvae of the Spatangidae. Journal of the Marine Biological Association of the United Kingdom, 32, 477490.CrossRefGoogle Scholar
Scheltema, R. S., 1974. Biological interactions determining larval settlement of marine invertebrates. Thalassia Jugoslavica, 10, 263296.Google Scholar
Sournia, A., Brylinski, J.-M., Dallot, S., Le, Corre P., Leveau, M., Prieur, L. & Froget, C., 1990. Fronts hydrologiques au large des cotes franchises: les sites-ateliers du programme Frontal. Oceanologica Ada, 13, 413438.Google Scholar
Starr, M., Himmelman, J. H. & Therriault, J.-C., 1990. Direct coupling of marine invertebrate spawning with phytoplankton blooms. Science, New York, 247, 10711074.CrossRefGoogle ScholarPubMed
Strathmann, R. R., 1974. The spread of sibling larvae of sedentary marine invertebrates. American Naturalist, 108, 2944.CrossRefGoogle Scholar
Strathmann, R. R, 1980. Why does a larva swim so long? Paleobiology, 6, 373376.CrossRefGoogle Scholar
Thorson, G., 1946. Reproduction and larval development of Danish marine bottom invertebrates with special references to the planktonic larvae in the Sound (Oresund). Meddelelser fra Kommissionen for Danmarks Fiskeri-og Havundersogelser. Serie: Plankton 4, 1523.Google Scholar
Thorson, G., 1950. Reproductive and larval ecology of marine bottom invertebrates. Biological Reviews, 25, 145.CrossRefGoogle ScholarPubMed
Thorson, G., 1961. Length of pelagic larval life in marine bottom invertebrates as related to larval transport by ocean currents. Oceanography. American Association for the Advancement of Science, 67, 455474.Google Scholar
Todd, C. D. & Doyle, R. W., 1981. Reproductive strategies of marine benthic invertebrates: a settlement-timing hypothesis. Marine Ecology Progress Series, 4, 7583.CrossRefGoogle Scholar
Tortonese, E., 1980. Review of present status of knowledge of the Mediterranean fauna (fishes and echinoderms). In Mediterranean marine ecosystems (ed. Moraitou-Apostolopoulou, M. and Kiortis, V.), pp. 5883. New York: Plenum Press.Google Scholar
Tranter, D. J., 1967. A formula for the filtration coefficient of a plankton net. Australian Journal of Marine and Freshwater Research, 1, 113121.CrossRefGoogle Scholar
Wieghardt, K. E. G., 1953. On the resistance of screens. Aeronautical Quarterly, 4, 186–172.CrossRefGoogle Scholar
Underwood, A. J. & Denley, E. J., 1983. Paradigms, explanations and generalizations models for the structure of intertidal communities on rocky shores. In Ecological communities: conceptual issues and evidence, (ed. Strong, D. R. Jret al.), pp. 151180. Princeton: Princeton University Press.Google Scholar