Hostname: page-component-5d59c44645-hb754 Total loading time: 0 Render date: 2024-03-01T00:15:14.863Z Has data issue: false hasContentIssue false

Vitamin B12 and Marine Ecology. IV. The Kinetics of Uptake, Growth and Inhibition in Monochrysis Lutheri

Published online by Cambridge University Press:  11 May 2009

M. R. Droop
Marine Station, Millport, Scotland


57Co-labelled vitamin B12 was used to study the kinetics of vitamin B12 limitation in Monochrysis lutheri in continuous and exponentially growing batch cultures and in washed cell suspensions.

Specific growth rate in the chemostats was found not to depend directly on medium substrate concentration but on the concentration within the cells (cell quota), obeying a hyperbolic equation of the form

Research Article
Copyright © Marine Biological Association of the United Kingdom 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Cohen, G. N. & Monod, J., 1957. Bacterial permeases. Bact. Rev., Vol. 21, pp. 169–94.Google Scholar
Daisley, K. W., 1961. Gel filtration of sea water: Separation of free and bound forms of vitamin B12. Nature, Lond., Vol. 191, pp. 868–9.Google Scholar
Dixon, M. & Webb, E. C., 1958. Enzymes, 782 pp. London: Longmans.Google Scholar
Droop, M. R., 1957. Vitamin B12 and marine ecology. Nature, Lond., Vol. 180, pp. 1041–2.Google Scholar
Droop, M. R., 1961. Vitamin B12 and marine ecology: the response of Monochrysis lutheri. J. mar. biol. Ass., U.K., Vol. 41, pp. 6976.Google Scholar
Droop, M. R., 1966. Vitamin B12 and marine ecology. Ill: An experiment with a chemostat. J. mar. biol. Ass., U.K., Vol. 46, pp. 659–71.Google Scholar
Eppley, R. W. & Strickland, J. D. H., 1968. Kinetics of marine phytoplankton growth. In Advances in Microbiology of the Sea, Vol. 1, pp. 2362. Ed. Droop, M. R. and Ferguson Wood, E. J.. London: Academic Press.Google Scholar
Fogg, G. E., 1962. Extracellular products. In Physiology and Biochemistry of Algae, pp. 475489. Ed. Lewin, R. A.. New York: Academic Press.Google Scholar
Fogg, G. E., 1966. The extracellular products of algae. Oceanogr. mar. Biol. Ann. Rev., Vol. 4, pp. 195212.Google Scholar
Ford, J. E., 1958. B12-vitamin and growth of the flagellate Ochromonas mathamensis. J. gen. Microbiol, Vol. 19, pp. 161–72.Google Scholar
Ford, J. E. & Goulden, J. D. S., 1959. The influence of vitamin B12 on growth rate and cell composition of the flagellate Ochromonas malhamensis. J. Gen. Microbiol., Vol. 20, pp. 267–76.Google Scholar
Guillard, R. R. L. & Cassie, V., 1963. Minimum cyanocobalamin requirements of some marine centric diatoms. Limnol. Oceanogr., Vol. 8, pp. 161–5.Google Scholar
Herbert, D., 1958. Some principles of continuous culture. Int. Congr. Microbiol 1958, pp. 381–96.Google Scholar
Herbert, D., 1961. The chemical composition of microorganisms as a function of their environment. Symp. Soc. gen. MicrobioL, No. 11, pp. 391416.Google Scholar
Herbert, D., Elsworth, R. & Telling, R. C., 1956. The continuous culture of bacteria; a theoretical and experimental study. J. gen. Microbiol, Vol. 14, pp. 601–22.Google Scholar
Hinchelwood, C. N., 1946. The Chemical Kinetics of the Bacterial Cell, 284 pp. Oxford: Clarendon Press.Google Scholar
Hutner, S. H. & Provasoli, L., 1951. The phytoflagellates. In Biochemistry and Physiology of Protozoa, Vol. 1, pp. 29128. Ed. A., Lwoff. New York: Academic Press.Google Scholar
Johnston, R., 1963. Sea water, the natural medium for phytoplankton. I. General features. J. mar. biol. Ass. U.K., Vol. 43, pp. 427–56.Google Scholar
Ketchum, B. H., 1939. The adsorption of phosphate and nitrate by illuminated cultures of Nitzschia closterium. Am. J. Bot., Vol. 26, pp. 399407.Google Scholar
Ketchum, B. H., 1954. Mineral nutrition of phytoplankton. A. Rev. Pl Physiol, Vol. 5, PP. 5574.Google Scholar
Kristensen, H. P. O., 1955. Investigations into the Euglena gracilis method for quantitative assay of vitamin B12. Acta physiol. scand., Vol. 33, pp. 232–7.Google Scholar
Kristensenj H. P. O., 1956. A vitamin B12-binding factor formed in cultures of Euglena gracilis, var. bacillaris. Acta physiol. scand., Vol. 36, pp. 813.Google Scholar
Kuenzler, E. J. & Ketchum, B. H., 1962. Rate of phosphorus uptake by Phaeodactylum tricornutum. Biol. Bull. mar. biol. Lab., Woods Hole., Vol. 123, pp. 134–45.Google Scholar
Lefêvre, M., Jacob, H. & Nisbet, N., 1952. Auto- et hétéroantagonisme chez les algues d'eau douce. Stn cent. Hydrobiol. appl., Vol. 4, 197 pp.Google Scholar
Lucas, C. E., 1949. External metabolites and ecological adaptations. Symp. Soc. exp. Biol., No. 3, pp. 336–56.Google Scholar
Lund, J. W. G., 1950. Studies on Asterionella formosa Mass. II. Nutrient depletion and the spring maximum. J. ecol., Vol. 38, pp. 114, 15–35.Google Scholar
Marker, A. F. H., 1965. Extracellular carbohydrate liberation in the flagellates Isochrysis galbana and Prymnesium parvum. J. mar. biol. Ass. U.K., Vol. 45, PP. 755–72.Google Scholar
Menzel, D. W. & Speath, J. P., 1962. Occurrence of vitamin B12 in the Sargasso Sea. Limnol. Oceanogr., Vol. 7, pp. 151–8.Google Scholar
Monod, J., 1942. Recherches sur la Croissance des Cultures Bacteriennes, 210 pp. Paris: Hermann.Google Scholar
Monod, J., 1950. La technique de culture continue; theorie et applications. Annls Inst. Pasteur, Paris, T 79, pp. 390410.Google Scholar
Oginsky, E. L., 1952. Uptake of vitamin B12 by Escherichia coli. Archs Biochem. Biophys., Vol. 36, pp. 71–9.Google Scholar
Proctor, V. W., 1957. Studies of algal antibiosis using Haematococcus and Chlamydomonas. Limnol. Oceanogr., Vol. 2, pp. 125–39.Google Scholar
Provasoli, L., 1963. Organic regulation of phytoplankton fertility. In The Sea, Vol. 2, pp. 163219. Ed. Hill, M. N.. New York: John Wylie & Sons.Google Scholar
Rodhe, W., 1948. Environmental requirements of fresh water plankton algae. Symb. hot. upsaliens, Vol. 10 (1), 149 pp.Google Scholar
Sekhara, , Varma, T. M., Abraham, A. & Hansen, I. A., 1961. Accumulation of Co58-vitamin B12 by Euglena gracilis. J. Protozool., Vol. 8, pp. 212–16.Google Scholar
Spencer, C. P., 1954. Studies on the culture of a marine diatom. J. mar. biol. Ass. U.K., Vol. 33, pp. 268–90.Google Scholar
Vaccaro, R. F. & Jannasch, H. W., 1966. Studies on the heterotrophic activity in sea water based on glucose assimilation. Limnol. Oceanogr., Vol. 11, pp. 596607.Google Scholar
Watt, W. D. & Fogg, G. E., 1966. The kinetics of extracellular glycollate production by Chlorelia pyrenoidosa. J. exp. Bot., Vol. 17, pp. 117–34.Google Scholar
Weissbach, H., Peterofsky, P. & Barker, H. A., 1965. Cobamide co-enzymes. In Comprehensive Biochemistry, Vol. 16. Ed. Florkin, M. and Stotz, E. M., New York: Elsevier.Google Scholar
Wright, R. T. & Hobbie, J. E., 1966. Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology, Vol. 47, pp. 447–64.Google Scholar