Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T22:07:22.110Z Has data issue: false hasContentIssue false

Chemical ecology and bioactivity of triterpene glycosides from the sea cucumber Psolus patagonicus (Dendrochirotida: Psolidae)

Published online by Cambridge University Press:  25 June 2008

C. Muniain*
Affiliation:
CONICET, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Angel Gallardo 470, (C1405DJR), Buenos Aires, Argentina
R. Centurión
Affiliation:
CONICET, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Angel Gallardo 470, (C1405DJR), Buenos Aires, Argentina
V.P. Careaga
Affiliation:
Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina
M.S. Maier
Affiliation:
Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina
*
Correspondence should be addressed to: C. Muniain CONICETMuseo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’Angel Gallardo 470, (C1405DJR) Buenos AiresArgentina email: cmuniain@macn.gov.ar

Abstract

Information on the chemical ecology and bioactivity of chemical compounds present in the sea cucumber Psolus patagonicus is provided through an interdisciplinary approach. The specimens studied were collected from two different and very distant sampling localities: Bridges Islands (Beagle Channel, Ushuaia, 54° 48′57″ S 66° 25′00″ W) at depths of 4 to 10 m by SCUBA diving, and from the scallop beds of Zigochlamys patagonica (39° 27′10″ S 55° 56′76″ W), at depths of 110 m and 115 m (43° 47′84″ S 59° 56′80″ W) by means of non-selective dredge in the South Atlantic Ocean.The secondary metabolites were isolated from complete adults by a combination of chromatographic methods and purified by high-performance liquid chromatography. They were characterized as triterpene glycosides through extensive spectroscopic analyses (nuclear magnetic resonance and fast atom bombardment mass spectroscopy) and chemical methods. A purified fraction containing Patagonicoside A as the main triterpene showed a high level of mortality against the brine shrimp Artemia salina and revealed different antifungal activity of Patagonicoside A and its desulphated glycoside (ds-Patagonicoside A) against the fungi Cladosporium fulvum, Fusarium oxysporum and Monilia sp., compared with a potent commercial antifungal product.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bingham, B. and Braithwaite, L. (1986) Defense adaptations of the dendrochirote holothurian Psolus chitonoides Clark. Journal of Experimental Marine Biology and Ecology 98, 311322.CrossRefGoogle Scholar
Bremec, C. and Lasta, M. (2002) Epibenthic assemblage associated with scallop (Zygochlamys patagonicus) beds in the Argentinean shelf. Bulletin of Marine Science 70, 89105.Google Scholar
Careaga, V.P., Bueno, C., Muniain, C., Alché, L. and Maier, M.S. (2007) Actividad antiproliferativa del glicósido triterpenoidal mayoritario del holotureo Psolus patagonicus y de su análogo desulfatado. In Resúmenes del XVI Simposio Nacional de Química Orgánica, XVI SINAQO. 11–14 November 2007, Mar del Plata, Buenos Aires.Google Scholar
Chludil, H., Muniain, C., Seldes, A. and Maier, M. (2002) Cytotoxic and antifungal triterpene glycosides from the Patagonian sea cucumber Hemioedema spectabilis. Journal of Natural Products 65, 860865.Google Scholar
Chludil, H., Murray, P., Seldes, A. and Maier, M. (2003) Biologically active triterpene glycosides from sea cucumbers (Holothuroidea, Echinodermata). In Atta-ur-Rahman, (ed.) Studies in natural products chemistry. Amsterdam: Elsevier Science, pp. 587616.Google Scholar
Cooper, H. (1880) Coral sands, vol. 2. London: Bentley and Sons.Google Scholar
Deichmann, E. (1947) Shallow water holothurians from Cabo de Hornos and adjacent waters. Anales del Museo Argentino de Ciencias Naturales 42, 325–51.Google Scholar
Ekman, S. (1925) Holothurian. Further zoological results of the Swedish Antarctic Expedition 1901–1903 1, 1194.Google Scholar
Flammang, P., Ribesse, J. and Jangoux, M. (2002) Biomechanics of adhesion in sea cucumber Cuvierian tubules (Echinodermata, Holothuroidea). Integral and Comparative Biology 42, 11071115.CrossRefGoogle ScholarPubMed
Flammang, R., Santos, D. and Haesaerts, D. (2005) Echinoderm adhesive secretions: from experimental characterization to biotechnological applications. In Matranga, V. (ed.) Echinodermata. Berlin, Heidelberg, New York: Springer-Verlag, pp. 201220.CrossRefGoogle Scholar
Fontana, A., Muniain, C. and Cimino, G. (1998) First chemical study of Patagonian nudibranchs: a new Seco 11–12 spongiane, Tyrinnal, from the defensive organs of Tyrinna nobilis. Journal of Natural Products 61, 10271029.CrossRefGoogle Scholar
Gavagnin, M., Ungur, N., Castelluccio, F., Muniain, C. and Cimino, G. (1999) New minor diterpenoid diacylglycerols from the skin of the nudibranch Anisodoris fontaini. Journal of Natural Products 62, 269274.CrossRefGoogle ScholarPubMed
Hamel, J.F. and Mercier, A. (2000) Cuvierian tubules in tropical holothurians: usefulness and efficiency as a defence mechanism. Marine and Freshwater Behaviour and Physiology 33, 115139.Google Scholar
Harper, M., Bugni, T., Copp, B., James, R., Lindsay, B., Richardson, A., Schnabel, P., Tasdemir, D., Van Wagoner, R., Verbitski, S. and Ireland, C. (2001) Introduction to the chemical ecology of marine natural products. In McClintock, J. and Baker, B. (eds) Marine chemical ecology. Florida: CRC Press, pp. 369.Google Scholar
Hernández, D. (1981) Holothuroidea de Puerto Deseado (Santa Cruz, Argentina). Revista del Museo Argentino de Ciencias Naturales 4, 151168.Google Scholar
Homans, A.L. and Fuchs, A. (1970) Direct bioautography on thin-layer chromatograms as a method for detecting fungitoxic substances. Journal of Chromatography 51, 327329.Google Scholar
Iyengar, E. and Harvell, D. (2001) Predator deterrence of early developmental stages of temperate lecithotrophic asteroids and holothuroids. Journal of Experimental Marine Biology and Ecology 264, 171188.Google Scholar
Kalinin, V. (2000) System–theoretical (holistic) approach to the modelling of structural–functional relationships of biomolecules and their evolution: an example of triterpene glycosides from sea cucumbers (Echinodermata, Holothuroidea). Journal of Theoretical Biology 206, 151168.Google Scholar
Kalinin, V., Stepanov, V.R. and Stonik, V. (1984) Psolusoside A. A new triterpene glycoside from the holothurian Psolus fabricii. Chemistry of Natural Compounds 19, 753754.CrossRefGoogle Scholar
Kalinin, V., Kalinovskii, A.I. and Stonik, V. (1985) Structure of Psolusoside a. The main triterpene glycoside from the holothurian Psolus fabricii. Chemistry of Natural Compounds 21, 197202.CrossRefGoogle Scholar
Kalinin, V., Kalinovskii, A., Stonik, V., Dmitrenok, P. and El'Kin, Y. (1989) Structure of psolusoside B-A nonholostane triterpene glycoside of the holothurian genus Psolus. Chemistry of Natural Compounds 25, 311317.Google Scholar
Kalinin, V., Anisimov, M., Prokofieva, N., Avilov, S., Afiyatullov, S.H. and Stonik, V. (1996) Biological activities and biological role of triterpene glycosides from holothuroids (Echinodermata). In Jangoux, M. and Lawrence, J. (eds) Echinoderm studies. Rotterdam: Balkema, pp. 139181.Google Scholar
Kalinin, V., Avilov, S., Kalinina, E., Korolkova, O., Kalinovsky, A., Stonik, V., Riguera, R. and Jiménez, C. (1997) Structure of Eximisoside A, a novel triterpene glycoside from the far-eastern sea cucumber Psolus eximius. Journal of Natural Products 60, 817819.CrossRefGoogle ScholarPubMed
Kelly, M.S. (2005) Echinoderms: their culture and bioactive compounds. In Matranga, V. (ed.) Echinodermata. Berlin, Heidelberg, New York: Springer-Verlag, pp. 139165.Google Scholar
Kerr, R.G. and Chen, Z. (1995) In vivo and in vitro biosynthesis of saponins in sea cucumbers. Journal of Natural Products 58, 172176.CrossRefGoogle ScholarPubMed
Lasta, M. and Bremec, C. (1997) Zygochlamys patagonica (King & Broderip, 1832): development of a new scallop fishery in the Southwestern Atlantic Ocean. In Proceedings of the International Pectinid Workshop, La Paz, México, pp. 138139.Google Scholar
Maier, M.S. and Murray, A.P. (2006) Secondary metabolites of biological significance from echinoderms. In Fingerman, M. and Nagabhushanam, R. (eds) Biomaterials from aquatic and terrestrial organisms. New Hampshire: Science Publishers, pp. 559593.Google Scholar
Maier, M.S., Roccatagliata, A.J., Kuriss, A., Chludil, H., Seldes, A.M., Pujol, C.A. and Damonte, E.B. (2001) Two new cytotoxic and virucidal trisulfated triterpene glycosides from the Antartic Sea Cucumber Staurocucumis liouvillei. Journal of Natural Products 64, 732736.CrossRefGoogle Scholar
Maier, M.S., Centurión, R., Muniain, C., Haddad, R. and Eberlín, M. (2007) Identification of sulfated steroidal glycosides from the starfish Heliaster helianthus by eletrospray ionización mass spectrometry. Arkivoc vii, 301309.Google Scholar
Martínez, M.J., Giménez, J. and Penchaszadeh, P. (2006) Ciclo reproductivo del haloturio Psolus patagonicus (Ekman, 1925) del Mar Argentino. In Resúmenes VI Jornadar Nacionales de Ciencias del Mar, 4–8 December 2006, Puerto Madrgn, Argentina, pp. 258.Google Scholar
Meyer, B.N., Ferrigni, N.R., Putman, J.T., Jacobsen, L.B., Nichols, D.E. and McLaughlin, J.L. (1982) Brine shrimp: a convenient general bioassay for active plant constituents. Planta Medica 45, 3134.CrossRefGoogle ScholarPubMed
McEuen, F.S. (1984) Chemical and morphological defenses of holothuroid eggs, larvae, and juveniles. American Zoologist 24, 25A.Google Scholar
Muniain, C., Giménez, J., Murray, A.P., Chludil, H. and Maier, M.S. (2005) An interdisciplinary study of Psolus patagonicus Ekman, 1925 (Psolidae, Dendrochitorida) from the Magellan Province and its northen Atlantic distribution. Berichte zur Polar und Meeresforschung 507, 165166.Google Scholar
Muniain, C., García, S.M. and Fontana, A. (2007a) Chemical ecology and bioactivity in the species Tritonia odhneri (Ophistobranchia, Dendronotacea) and Renilla sp. (Octocorallia, Pennatulacea) from Patagonia, Argentina. In Proceedings of the V EuroConference on Marine Natural Products, 16–21 September 2007, Naples, Italy, pp. 177.Google Scholar
Muniain, C., Centurión, R., Careaga, V., Espoz, C. and Maier, M. (2007b) Marine Natural Products of sea cucumbers and sea stars in Argentina: Bioactivity and Chemical Ecology. In Proceedings of the V EuroConference on Marine Natural Products, 16–21 September 2007, Naples, Italy, pp. 130.Google Scholar
Murray, A.P., Muniain, C., Seldes, A. and Maier, M. (2001) Patagonicoside A: a novel anti-fungal disulfated triterpene glycoside from the sea cucumber Psolus patagonicus. Tetrahedron 57, 95639568.Google Scholar
Pawson, D. (1964) The Holothuroidea collected by the Royal Society Expedition to Southern Chile, 1958–1959. Pacific Science 18, 453–70.Google Scholar
Pawson, D. (1969) Holothuroidea from Chile. Report No. 46 of the Lund University Chile Expedition 1948–1949. Sarsia 38, 121145.Google Scholar
Petzelt, C. (2005) Are echinoderms of interest to biotechnology? In Matranga, V. (ed.) Echinodermata. Berlin, Heidelberg, New York: Springer-Verlag, pp. 16.Google Scholar
Shimada, S. (1969) Antifungal steroid glycoside from sea cucumbers. Science 163, 14621465.CrossRefGoogle Scholar
Stonik, V.A., Kalinin, V.I. and Avilov, S.A. (1999) Toxins from sea cucumbers (Holothuroids): chemical structures, properties, taxonomic distribution, biosynthesis and evolution. Journal of Natural Toxins 8, 235248.Google ScholarPubMed
Vandenspiegel, D., Jangoux, M. and Flammang, P. (2000) Maintaining the line of defense: regeneration of Cuvierian tubules in the sea cucumber Holothuria forskali (Echinodermata, Holothuroidea). Biological Bulletin. Marine Biological Laboratory, Woods Hole 198, 3449.CrossRefGoogle ScholarPubMed
Yokota, Y. (2005) Bioresources from echinoderms. In Matranga, V. (ed.) Echinodermata. Berlin, Heidelberg, New York: Springer-Verlag, pp. 251266.CrossRefGoogle Scholar