Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T18:27:18.324Z Has data issue: false hasContentIssue false

Eco-morphological consequences of the ‘rostral loss’ in the intertidal marine shrimp Hippolyte sapphica morphotypes

Published online by Cambridge University Press:  26 October 2017

Roman Liasko*
Affiliation:
Laboratory of Zoology, Department of Biological Applications & Technology, University of Ioannina, University Campus, Ioannina, 45110, Greece
Chryssa Anastasiadou
Affiliation:
Fisheries Research Institute, Nea Peramos, Kavala, Macedonia, 64007, Greece
Alexandros Ntakis
Affiliation:
Laboratory of Zoology, Department of Biological Applications & Technology, University of Ioannina, University Campus, Ioannina, 45110, Greece
*
Correspondence should be addressed to: R. Liasko, Laboratory of Zoology, Department of Biological Applications & Technology, University of Ioannina, University Campus, Ioannina, 45110, Greece email: rliasko@cc.uoi.gr

Abstract

The shrimp Hippolyte sapphica has a unique and sharp rostral dimorphism: morphotype A with a well-developed dentate rostrum, and morphotype B with a short, juvenile-like toothless rostrum. Previous research has shown that both morphotypes/forms belong to the same species and co-occur in the same habitat. Both forms occur in both sexes; however, form B individuals have a higher tendency to become males. Moreover, form A females are characterized by prolonged viability. The present comparative morphometric study concentrates on the changes induced by the rostral dimorphism and interprets them in terms of eco-morphological adaptations. Results showed that (i) the rostral length was the most isometric among the studied morphometric variables; (ii) males of A and B forms were not significantly different morphometrically; (iii) unexpectedly, form A non-ovigerous females had more developed carapace, abdominal somites and appendages in comparison with form B and, finally (iv), form B ovigerous females had higher tail and scaphocerite lengths, suggesting that they overcome higher turbulent force during the rapid backward movements and that the long rostrum improves hydrodynamic streamlining and stability. In conclusion, the previous finding that form B individuals tend to become males receives an adaptational explanation. The gene(s) responsible for the short rostrum accumulate in males, where their micro-evolutionary disadvantage is minimal or even absent.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Accioly, I.V., Lima-Filho, P.A., Santos, T.L., Barbosa, A.C., Santos Campos, L.B., Souza, J.V., Araújo, W.C. and Molina, W.F. (2013) Sexual dimorphism in Litopenaeus vannamei (Decapoda) identified by geometric morphometrics. Pan-American Journal of Aquatic Sciences 8, 276281.Google Scholar
Anastasiadou, Ch., Koukouras, A., Mavidis, M., Chartosia, N., Mostakim, M., Christodoulou, M. and Aslanoglou, Ch. (2004) Morphological variation in Atyaephyra desmarestii (Millet, 1831) within and among populations over its geographical range. Mediterranean Marine Science 5, 513.Google Scholar
Baldwin, A.P. and Bauer, R.T. (2003) Growth, survivorship, life-span and sex change in the hermaphrodite shrimp Lysmata wurdemanni (Decapoda: Caridea: Hippolytidae). Marine Biology 143, 157166.Google Scholar
Bauer, R.T. (2000) Simultaneous hermaphroditism in Caridean shrimps: a unique and puzzling sexual system in the Decapoda. Journal of Crustacean Biology 20, 116128.Google Scholar
Bertin, A., David, B., Cézilly, F. and Alibert, P. (2002) Quantification of sexual dimorphism in Asellus aquaticus (Crustacea: Isopoda) using outline approaches. Biological Journal of Linnean Society 77, 523533.Google Scholar
Bookstein, F.L. (1991) Morphometric tools for landmark data, geometry and biology. Cambridge: Cambridge University Press.Google Scholar
Burukovsky, R.N. (1972) On the function of the rostrum in shrimps. Trudy Atlanticheskii Nauchno-issledovatel'ski Inst. Rybnogo Kozyaistva I Okeanografii (AtlantNIRO) 42, 176179. [In Russian]Google Scholar
Burukovsky, R.N. and Romensky, L.L. (1972) On the variability of the rostrum in the Aristeus. Trudy Atlanticheskii Nauchno-issledovatel'ski Inst. Rybnogo Kozyaistva I Okeanografii (AtlantNIRO), 42, 176179. [In Russian]Google Scholar
Cook, J.M. (2002) Sex determination in invertebrates. In Hardy I.C.W. (ed.) Sex ratios: concepts and research methods. Cambridge: Cambridge University Press, pp. 178194.Google Scholar
Correa, C. and Thiel, M. (2003) Mating systems in caridean shrimp (Decapoda: Caridea) and their evolutionary consequences for sexual dimorphism and reproductive biology. Revista Chilena de Historia Natural 76, 187203.Google Scholar
Covish, A.P., Crowl, T.A., Hein, C.L., Townsend, M.J. and McDowell, W.H. (2009) Predator-prey interactions in river networks: comparing shrimp spatial refugia in two drainage basins. Freshwater Biology 54, 450465.Google Scholar
De Grave, S. (1999) Variation in rostral dentition and telson setation in a saltmarsh population of Palaemonetes varians (Leach) (Crustacea: Decapoda: Palaemonidae). Hydrobiologia 397, 101108.Google Scholar
d'Udekem d'Acoz, C. (1993) Description d'une nouvelle crevette de l'ile de Lesbos: Hippolyte sapphica sp. nov. (Crustacea, Decapoda, Caridea: Hippolytidae). Belgian Journal of Zoology 123, 5565.Google Scholar
d'Udekem d'Acoz, C. (1996) The genus Hippolyte Leach, 1814 (Crustacea, Decapoda, Caridea: Hippolytidae) in the East Atlantic Ocean and the Mediterranean Sea, with a checklist of all species in the genus. Zoologische Verhandelingen 303, 7990.Google Scholar
d'Udekem d'Acoz, C. (1997) Redescription of Hippolyte obliquimanus Dana, 1852 and comparison with Hippolyte williamsi Schmitt, 1924 (Decapoda, Caridea). Crustaceana 70, 469479.Google Scholar
d'Udekem d'Acoz, C. (1999) Inventaire et distribution des crustacés décapodes de l'Atlantique nord-oriental; de la Méditerranée et des eaux continentales adjacentes au nord du 25oN. Patrimoines naturelles 40, 383.Google Scholar
Fernandes, C.S. and Bichuette, M.E. (2012) Shape variation of Aegla schmittii (Crustacea, Decapoda, Aeglidae) associated to superficial and subterranean stream reaches. Subterranean Biology 10, 1724.Google Scholar
Hingst-Zaher, E. and de Moraes, D.A. (2003) Consequences of the choice of landmarks for visualization and biological interpretation of shape changes in 2-D geometric morphometrics: a study case. XVI Brazilian Symposium on Computer Graphics and Image Processing. San-Paolo, Brazil, conference paper.Google Scholar
Jugovic, J., Prevorcnik, S., Aljancic, G. and Sket, B. (2010) The atyid shrimp (Crustacea: Decapoda: Atyidae) rostrum: phylogeny versus adaptation, taxonomy versus trophic ecology. Journal of Natural History 44, 25092533.Google Scholar
Kapiris, K. (2005) Morphometric structure and allometry profiles of the giant red shrimp Aristaeomorpha foliacea (Risso, 1927) in the eastern Mediterranean. Journal of Natural History 39, 13471357.Google Scholar
Kapiris, K. and Kavvadas, S. (2009) Morphometric study of the red shrimp Aristeus antennatus in the Eastern Mediterranean. Aquatic Ecology 43, 10611071.Google Scholar
Kapiris, K. and Thessalou-Legaki, M. (2001) Sex-related variability of rostrum morphometry of Aristeus antennatus (Decapoda: Aristeidae) from the Ionian Sea (eastern Mediterranean, Greece). Hydrobiologia 449, 123130.Google Scholar
Koukouras, A. and Anastasiadou, C. (2002) The genus Hippolyte (Decapoda, Caridea) in the Aegean and Ionian seas. Crustaceana 75, 443449.Google Scholar
Liasko, R., Anastasiadou, C., Ntakis, A. and Leonardos, I.D. (2015) How a sharp rostral dimorphism affects the life history, population structure and adaptability of a small shrimp: the case study of Hippolyte sapphica. Marine Ecology 36, 400407.Google Scholar
Lleonart, J., Salat, J. and Torres, G.J. (2000) Removing allometric effects of body size in morphological analysis. Journal of Theoretical Biology 205, 8593.Google Scholar
Losano-Álvarez, E., Briones-Fourzán, P., Gracia, A. and Vázquez-Bader, A.R. (2007) Relative growth and size at first maturity of the deep water shrimp, Heterocarpus ensifer (Decapoda, Pandalidae) from the Southern Gulf of Mexico. Crustaceana 80, 555568.Google Scholar
Ntakis, A., Anastasiadou, C., Liasko, R. and Leonardos, I.D. (2010) Larval development of the shrimp Hippolyte sapphica d'Udekem d'Acoz, 1993 forma A and B (Decapoda: Caridea: Hippolytidae) reared in the laboratory: confirmation of the conspecific status of the two forms. Zootaxa 2579, 4558.Google Scholar
Ocasio-Torres, M.E., Crowl, T.A. and Sabat, A.M. (2014) Long rostrum in an amphidromous shrimp induced by chemical signals from a predatory fish. Freshwater Science 33, 451458.Google Scholar
Ocasio-Torres, M.E., Crowl, T.A. and Sabat, A.M. (2015a) Allometric differences between two phenotypes of the amphidromous shrimp Xiphocaris elongata. Journal of Crustacean Biology 35, 747752.Google Scholar
Ocasio-Torres, M.E., Giray, T., Crowl, T.A. and Sabat, A.M. (2015b) Antipredator defense mechanism in the amphidromous shrimp Xiphocaris elongata (Decapoda: Xiphocarididae): rostrum length. Journal of Natural History 49, 14931506.Google Scholar
Sardà, F., Bas, C., Roldan, M.I., Pla, C. and Lleonart, J. (1995) Functional morphometry of Aristeus antennatus (Risso 1816) (Decapoda, Aristeidae). Crustaceana 68, 461471.Google Scholar
Sardà, F., Bas, C., Roldán, M.I., Pla, C. and Lleonart, J. (1998) Enzymatic and morphometric analyses in Mediterranean populations of the rose shrimp, Aristeus antennatus (Risso, 1816). Journal of Experimental Marine Biology and Ecology 221, 131144.Google Scholar
Sardà, F., Company, J.B. and Costa, C. (2005) A morphological approach for relating decapod crustacean cephalothorax shape with distribution in the water column. Marine Biology 147, 611618.Google Scholar
Zupo, V. (1994) Strategies of sexual inversion in Hippolyte inermis Leach (Crustacea, Decapoda) from a Mediterranean seagrass meadow. Journal of Experimental Marine Biology and Ecology 178, 131145.Google Scholar