Skip to main content Accessibility help

Marine free-living nematodes associated with symbiotic bacteria in deep-sea canyons of north-east Atlantic Ocean

  • Alexei V. Tchesunov (a1), Jeroen Ingels (a2) and Ekaterina V. Popova (a1)


Two nematode species living in association with chemoautotrophic prokaryotes were found in two deep-sea canyon/channel systems, the Whittard Canyon and Gollum Channels, north-east Atlantic. Parabostrichus bathyalis gen. nov. sp. nov. (Desmodorida: Desmodoridae: Stilbonematinae) relates to Eubostrichus Greeff 1869 but differs in having well-developed paired dorso-caudal apophyses of the gubernaculum, small pre- and postcloacal latero-ventral papillae with short apical setae, elongate tail with slender posterior portion, and the absence of thorn-like setae (porids) in males. Body of P. bathyalis is loosely covered with elongate cells of prokaryote ectosymbionts. Astomonema southwardorum Austen et al. 1993, originally found at a methane seep pockmark in the North Sea, constitutes a significant portion of nematode communities in certain areas of the deep-sea canyon/channel systems. Taxonomic difficulties within Astomonematinae are discussed in light of the character state of paired male gonads discovered in A. southwardorum. Canyon populations of A. southwardorum are characterized by frequent loss of part of the hind body and wound healing posterior to the vulva in females. Both species tend to occur in deeper subsurface layers of the bottom sediment. Abundance of the nematode species associated with aggregations of ectosymbiotic (Parabostrichus) and endosymbiotic (Astomonema) chemoautotrophic bacteria may indicate reduced conditions at sites in these deep-sea canyons/channels and suggests a potentially substantial ecological role for chemolitotrophic fauna there.


Corresponding author

Correspondence should be addressed to: A.V. Tchesunov, Department of Invertebrate Zoology, Faculty of Biology, Lomonosov's Moscow State University, Moscow, 119991, Russia email:


Hide All
Austen, M.C., Warwick, R.M. and Ryan, K.P. (1993) Astomonema southwardorum sp. nov., a gutless nematode dominant in a methane seep area in the North Sea. Journal of the Marine Biological Association of the United Kingdom 73, 627634.
Bayer, Ch., Heindl, N.L., Rinke, Ch., Lücker, S., Ott, J.A. and Bulgheresi, S. (2009) Molecular characterization of the symbionts associated with marine nematodes of the genus Robbea. Environmental Microbiology Reports 1, 136144.
Bernhard, J.M., Buck, K.R., Farmer, M.A. and Bowser, S.S. (2000) The Santa Barbara Basin is a symbiosis oasis. Nature 403, 7780.
Bird, A.F. and Bird, J. (1991) The structure of nematodes. 2nd edition. San Diego, CA: Academic Press.
Bongers, T. (1983) Bionomics and reproductive cycle of the nematode Leptosomatum bacillatum living in the sponge Halichondria panacea. Netherlands Journal of Sea Research 17, 3946.
Cobb, N.A. (1925) Proceedings of the seventy-ninth to eighty-second meeting of the Helminthological Society of Washington. Journal of Parasitology 2, 222.
De Leo, F.C., Smith, C.R., Rowden, A.A., Bowden, D.A. and Clark, M.R. (2010) Submarine canyons: hotspots of benthic biomass and productivity in the deep sea. Proceedings of the Royal Society B: Biological Sciences. Doi: 10.1098/rspb.2010.0462.
Gerlach, S.A. (1963) Freilebende Meeresnematoden von den Malediven II. Kieler Meeresforschungen 18, 67103.
Giere, O. (2009) Meiobenthology, the microscopic motile fauna of aquatic sediments. Berlin and Heidelberg: Springer-Verlag.
Giere, O., Windoffer, R. and Southward, E.C. (1995) The bacterial endosymbiosis of the gutless nematode, Astomonema sothwardorum: ultrastructural aspects. Journal of the Marine Biological Association of the United Kingdom 75, 153164.
Harris, P.T. and Whiteway, T. (2011) Global distribution of large submarine canyons: geomorphic differences between active and passive continental margins. Marine Geology 285, 6986.
Heip, C., Vincx, M. and Vranken, G. (1985) The ecology of marine nematodes. Oceanography and Marine Biology: an Annual Review 23, 399489.
Hendelberg, M. (1977) Paralinhomoeus gerlachi (Linhomoeidae), a new marine nematode from Bermuda. Zoon 5, 7986.
Hentschel, U., Berger, E.C., Bright, M., Felbeck, H. and Ott, J.A. (1999) Metabolism of nitrogen and sulfur in ectosymbiotic bacteria of marine nematodes (Nematoda, Stilbonematinae). Marine Ecology Progress Series 183, 149158.
Hopper, B.E. and Cefalu, R.C. (1973) Free-living marine nematodes from Biscayne Bay, Florida V. Stilbonematinae: contributions to the taxonomy and morphology of the genus Eubostrichus Greef and related genera. Transactions of the American Microscopical Society 92, 578591.
Ingels, J., Billett, D.S.M., Wolff, G., Kiriakoulakis, K. and Vanreusel, A (2011b) Structural and functional diversity of Nematoda in relation with environmental variables in the Setúbal and Cascais canyons, Western Iberian Margin. Deep-Sea Research Part II: Topical Studies in Oceanography 58, 23542368.
Ingels, J., Kiriakoulakis, K., Wolff, G.A. and Vanreusel, A. (2009) Nematode diversity and its relation to quantity and quality of sedimentary organic matter in the Nazaré Canyon, Western Iberian Margin. Deep-Sea Research Part I: Oceanographic Research Papers 56, 15211539.
Ingels, J., Tchesunov, A. and Vanreusel, A. (2011a) Meiofauna in the Gollum Channels and the Whittard Canyon, Celtic Margin: how local environmental conditions shape nematode structure and function. PLoS ONE 6, e20094. doi:10.1371/journal.pone.0020094.
Ingels, J., Van Rooij, D. and Vanreusel, A. (2006) HERMES RV Belgica 2006/13 Biology cruise report (23–29 June 2006): Gollum Channels and Whittard Canyon.
Kito, K. (1989) A new mouthless marine nematode from Fiji. Journal of Natural History 23, 635642.
Kito, K. and Aryuthaka, Ch. (2006) New mouthless nematode of the genus Parastomonema Kito, 1989 (Nematoda: Siphonolaimidae) from a mangrove forest on the coast of Thailand, and erection of the new subfamily Astomonematinae within the Siphonolaimidae. Zootaxa 1177, 3949.
Korotkova, G.P. and Agafonova, L.A. (1976) Experimental morphological study of reparative abilities of the nematode Pontonema vulgare. Archives of Anatomy, Histology and Embryology 70, 9098. [In Russian, with English summary.]
Lampitt, R.S., Raine, R.C.T., Billett, D.S.M. and Rice, A.L. (1995) Material supply to the European continental slope: a budget based on benthic oxygen demand and organic supply. Deep-Sea Research Part I: Oceanographic Research Papers 42, 18651873.
Longhurst, A., Sathyendranath, S., Platt, T. and Caverhill, C. (1995) An estimate of global primary production in the ocean from satellite radiometer data. Journal of Plankton Research 17, 12451271.
McClain, C.R. and Barry, J.P. (2010) Habitat heterogeneity, disturbance, and productivity work in concert to regulate biodiversity in deep submarine canyons. Ecology 91, 964976.
Mokievsky, V.O., Udalov, A.A. and Azovskii, A.I. (2007) Quantitative distribution of meiobenthos in deep-water zones of the World Ocean. Oceanology 47, 797813.
Musat, N., Giere, O., Gieseke, A., Thiermann, F., Amann, R. and Dubilier, N. (2007) Molecular and morphological characterization of the association between bacterial endosymbionts and the marine nematode Astomonema sp. from the Bahamas. Environmental Microbiology 9, 13451353.
Ott, J.A. (1972) Twelve new species of nematodes from an intertidal sandflat in North Carolina. Internationale Revue der gesamten Hydrobiologie und Hydrographie 57, 463496.
Ott, J.A. and Novak, R. (1989) Living at an interface: meiofauna at the oxygen/sulfide boundary of marine sediments. In Ryland, J.S. and Tyler, P.A. (eds) Reproduction, genetics and distribution of marine organisms. Fredensborg, Denmark: Olsen & Olsen, pp. 415422.
Ott, J., Bright, M. and Bulgheresi, S. (2004a) Marine microbial thiotrophic ectosymbioses. Oceanography and Marine Biology: an Annual Review 42, 95118.
Ott, J., Bright, M. and Bulgheresi, S. (2004b) Symbioses between marine nematodes and sulphur-oxidizing chemoautotrophic bacteria. Symbiosis 36, 102126.
Ott, J.A., Novak, R., Schiemer, P., Hentschel, U., Nebelsick, M. and Polz, M. (1991) Tackling the sulphide gradient: a novel strategy involving marine and chemoautotrophic ectosymbionts. P.S.Z.N. I.: Marine Ecology 12, 261279.
Ott, J.A., Rieger, G. and Enderes, F. (1982) New mouthless interstitial worms from the sulphide system: symbiosis with prokaryotes. P.S.Z.N.I.: Marine Ecology 3, 313333.
Riemann, F., Thiermann, F. and Bock, L. (2003) Leptonemella species (Desmodoridae, Stilbonematinae), benthic marine nematodes with ectosymbiotic bacteria from littoral sand of the North Sea island of Sylt: taxonomy and ecological aspects. Helgoland Marine Research 57, 118131.
Schiemer, F., Novak, R. and Ott, J. (1990) Metabolic studies on thiobiotic free-living nematodes and their symbiotic microorganisms. Marine Biology 106, 129137.
Soltwedel, T. (2000) Metazoan meiobenthos along continental margins: a review. Progress in Oceanography 46, 5984.
Tchesunov, A.V. (1986) Two new sympatric species of nematodes from the genus Megadesmolaimus (Monhysterida, Linhomoeidae) in the Red Sea. Zoologichesky Zhurnal 65, 819828. [In Russian, with English summary.]
Van Gaever, S., Moodley, L., de Beer, D. and Vanreusel, A. (2006) Meiobenthos at the Arctic Håkon Mosby Mud Volcano, with a parental-caring nematode thriving in sulphide-rich sediments. Marine Ecology Progress Series 321, 143155.
Vincx, M. (1996) Meiofauna in marine and fresh water sediments. In Hall, G.S. (ed.) Methods for the examination of organismal diversity in silts and sediments. Cambridge: CAB International and Cambridge University Press, pp. 214248.
Vitiello, P. (1970) Nématodes libres marins des vases profondes du Golfe du Lion. Téthys 2, 647690.


Related content

Powered by UNSILO

Marine free-living nematodes associated with symbiotic bacteria in deep-sea canyons of north-east Atlantic Ocean

  • Alexei V. Tchesunov (a1), Jeroen Ingels (a2) and Ekaterina V. Popova (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.