Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-15T16:30:52.042Z Has data issue: false hasContentIssue false

Niche overlap and resource partitioning between two intertidal hermit crab species

Published online by Cambridge University Press:  07 December 2017

Guillermina Alcaraz*
Affiliation:
Laboratorio de Ecofisiología, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, México City 04510, México
Karla Kruesi
Affiliation:
Laboratorio de Ecofisiología, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, México City 04510, México
*
Correspondence should be addressed to: G. Alcaraz, Laboratorio de Ecofisiología, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, México City 04510, México email: alcaraz@ciencias.unam.mx

Abstract

The gastropod shell influences important aspects of the hermit crab's life; however, the shells are commonly a limited resource. Therefore, different hermit crab species that coexist in intertidal areas are commonly involved in intraspecific and interspecific competition for shells. We assess if differences in shell preference, exploitation ability, or competition by interference can explain the partitioning of shells between the coexisting species Calcinus californiensis and Clibanarius albidigitus. Clibanarius preferred shells of Nerita funiculata among the six gastropod shells tested, while Calcinus did not establish a hierarchy in shell preference. Therefore, the preference for gastropod shell species does not seem to diminish the competition for shells in the wild. Clibanarius identified and attended to chemical cues signalling potential sites of available shells (chemical cues of dead gastropods); Calcinus did not respond to these cues (competition by exploitation). However, Calcinus was more successful in obtaining a new shell by interspecific shell fighting than Clibanarius. Consequently, the use of better quality shells (intact shells) by Calcinus in the wild can be explained by its greater fighting ability compared with Clibanarius. The bias in shell distributions through dominance by shell fighting, more than by exploitation ability, has also been suggested for other hermit crab species of these genera.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, R.T. (1968) Seashells of North America: a guide to field identification. New York, NY: Western Publ. Com. Inc., 280 pp.Google Scholar
Abrams, P.A. (1980) Resource partitioning and interspecific competition in a tropical hermit crab community. Oecologia 46, 365379. doi: 10.1007/BF00346266.Google Scholar
Abrams, P.A. (1981) Shell fighting and competition between two hermit crab species in Panama. Oecologia 51, 8490. doi: 10.1007/BF00344657.Google Scholar
Alcaraz, G. and Arce, E. (2017) Predator discrimination in the hermit crab Calcinus californiensis: tight for shell breakers, loose for shell peelers. Oikos 126, 12991307. doi: 10.1111/oik.03742.Google Scholar
Alcaraz, G., Chávez-Solís, C.E. and Kruesi, K. (2015) Mismatch between body growth and shell preference in hermit crabs is explained by protection from predators. Hydrobiologia 743, 151156. doi: 10.1007/s10750-014-2029-8.Google Scholar
Alcaraz, G. and García-Cabello, K.N. (2017) Feeding and metabolic compensations in response to different foraging costs. Hydrobiologia 787, 217. doi: 10.1007/s10750-016-2965-6.Google Scholar
Alcaraz, G. and Jofre, G.I. (2017) Aggressiveness compensates for low muscle strength and metabolic disadvantages in shell fighting. Behavioral Ecology and Sociobiology 71, 87. doi: 10.1007/s00265-017-2311-7.Google Scholar
Alcaraz, G. and Kruesi, K. (2012) Exploring the phenotypic plasticity of standard metabolic rate and its inter-individual consistency in the hermit crab Calcinus californiensis. Journal of Experimental Marine Biology and Ecology 412, 2026. doi: 10.1016/j.jembe.2011.10.014.Google Scholar
Angel, J.E. (2000) Effects of shell fit on the biology of the hermit crab Pagurus longicarpus (Say). Journal of Experimental Marine Biology and Ecology 243, 169184. doi: 10.1016/S0022-0981(99)00119-7.Google Scholar
Arce, E.U. and Alcaraz, G. (2011) Shell use by the intertidal hermit crab Calcinus californiensis at different levels of the intertidal zone. Scientia Marina 75, 121128. doi: 10.3989/scimar.2011.75n1121.Google Scholar
Arce, E.U. and Alcaraz, G. (2012) Shell preference in a hermit crab: comparison between paired shell choice trials and a multiple alternatives experiment. Marine Biology 159, 853862. doi: 10.1007/s00227-011-1861-x.Google Scholar
Arce, E.U. and Alcaraz, G. (2013) Plasticity of shell preference and its antipredatory advantages in the hermit crab Calcinus californiensis. Canadian Journal of Zoology 91, 321327. doi: 10.1139/cjz-2012-0310.Google Scholar
Bach, C., Hazlett, B. and Rittschof, D. (1976) Effects of interspecific competition on fitness of the hermit crab Clibanarius tricolor. Ecology 57, 579586. http://www.jstor.org/stable/1936442.Google Scholar
Ball, E. and Haig, J. (1974) Hermit crabs from the tropical Eastern Pacific. Bulletin of the Southern California Academy of Science 73, 95104. http://scholar.oxy.edu/scas/vol73/iss2/8.Google Scholar
Bertness, M.D. (1980) Shell preference and utilization patterns in littoral hermit crabs of the Bay of Panama. Journal of Experimental Marine Biology and Ecology 48, 116. doi: 10.1016/0022-0981(80)90002-7.Google Scholar
Bertness, M.D. (1981a) Interference, exploitation, and sexual components of competition in a tropical hermit crab assemblage. Journal of Experimental Marine Biology and Ecology 49, 189202. doi: 10.1016/0022-0981(81)90070-8.Google Scholar
Bertness, M.D. (1981b) The influence of shell-type of hermit crab growth rate and clutch size (Decapoda, Anomura). Crustaceana 40, 197205. http://www.jstor.org/stable/20103597.Google Scholar
Bertness, M.D. (1981c) Competitive dynamics of a tropical hermit crab assemblage. Ecology 62, 751761.Google Scholar
Block, B.A. (2005) Physiological ecology in the 21st century: advancements in biologging science. Integrative and Comparative Biology 45, 305320. doi: 10.1093/icb/45.2.305.Google Scholar
Brown, W.L. and Wilson, E.O. (1956) Character displacement. Systematic Zoology 5, 4965. doi: 10.2307/2411924.Google Scholar
Bulinski, K.V. (2007) Shell-selection behavior of the hermit crab Pagurus granosimanus in relation to isolation, competition, and predation. Journal of Shellfish Research 26, 233239. doi: 10.2983/0730-8000(2007)26[233:SBOTHC]2.0.CO;2.Google Scholar
Busato, P., Benvenuto, C. and Gherardi, F. (1998) Competitive dynamics of a Mediterranean hermit crab assemblage: the role of interference and exploitative competition for shells. Journal of Natural History 32, 14471451. doi: 10.1080/00222939800770981.Google Scholar
Childress, J.R. (1972) Behavioral ecology and fitness theory in a tropical hermit crab. Ecology 53, 960964. doi: 10.2307/1934316.Google Scholar
Dominciano, L.C.C., Sant'Anna, B.S. and Turra, A. (2009) Are the preference and selection patterns of hermit crabs for gastropod shells species- or site-specific? Journal of Experimental Marine Biology and Ecology 378, 1521. doi: 10.1016/j.jembe.2009.07.002.Google Scholar
Elwood, W., McClean, A. and Webb, L. (1979) The development of shell preferences by the hermit crab Pagurus bernhardus. Animal Behavior 27, 940946. doi: 10.1016/0003-3472(79)90032-0.Google Scholar
Ferrari, M.C.O., Brown, G.E., Messier, F. and Chivers, D.P. (2009) Threat-sensitive generalization of predator recognition by larval amphibians. Behavioral Ecology and Sociobiology 63, 13691375. doi: 10.1007/s00265-009-0779-5.Google Scholar
Ferrari, M.C.O., Gonzalo, A., Messier, F. and Chivers, D.P. (2007) Generalization of learned predator recognition: an experimental test and framework for future studies. Proceedings of the Royal Society B 274, 18531859. doi: 10.1098/rspb.2007.0297.Google Scholar
Fotheringham, N. (1976) Population consequences of shell utilization by hermit crabs. Ecology 57, 570578. http://www.jstor.org/stable/1936441.Google Scholar
Finke, D.L. and Snyder, W.E. (2008) Niche partitioning increases resource exploitation by diverse communities. Science 321, 14881490. doi: 10.1126/science.1160854.Google Scholar
Garrett, H. (1960) The competitive exclusion principle. Science 131, 12921297. doi: 10.1126/science.131.3409.1292.Google Scholar
Gherardi, F. (1990) Competition and coexistence in two Mediterranean hermit crabs, Calcinus ornatus (Roux) and Clibanarius erythropus (Latreille) (Decapoda, Anomura). Journal of Experimental Marine Biology and Ecology 143, 221238. doi: 10.1016/0022-0981(90)90072-K.Google Scholar
Gherardi, F. and Nardone, F. (1995) The question of coexistence in hermit crabs: population ecology of a tropical intertidal assemblage. Crustaceana 70, 608629. http://www.jstor.org/stable/20105893.Google Scholar
Grant, W.C. Jr and Ulmer, K.M. (1974) Shell selection and aggressive behavior in two sympatric species of hermit crabs. Biological Bulletin 146, 3243. doi: 10.2307/1540395.Google Scholar
Guerrero, E.M.O. (2015) Ocupación, preferencia y competencia por conchas de gasterópodos en dos especies de cangrejos ermitaños. Bachelor's thesis. Universidad Nacional Autónoma de México, Facultad de Ciencias, Mexico City, Mexico. 44 pp.Google Scholar
Hazlett, B.A. (1970) Interspecific shell fighting in three sympatric species of hermit crabs in Hawaii. Pacific Science 24, 472482. http://hdl.handle.net/10125/6125.Google Scholar
Hazlett, B.A. (1971) Influence of rearing conditions on initial shell entering behavior of a hermit crab (Decapoda, Paguridea). Crustaceana 20, 167170. http://www.jstor.org/stable/20101773.Google Scholar
Hazlett, B.A. (1981) The behavioral ecology of hermit crabs. Annual Review of Ecology and Systematics 12, 122. http://www.jstor.org/stable/2097103.Google Scholar
Hazlett, B.A. (1995) Behavioral plasticity in Crustacea: why not more? Journal of Experimental Marine Biology and Ecology 193, 5766. doi: 10.1016/0022-0981(95)00110-7.Google Scholar
Keen, M.A. (1971) Sea shells of tropical West America. Stanford, CA: Stanford University Press, 1064 pp.Google Scholar
Kellogg, C.W. (1976) Gastropod shells: a potentially limiting resource for hermit crabs. Journal of Experimental Marine Biology and Ecology 22, 101111. doi: 10.1016/0022-0981(76)90112-X.Google Scholar
Kellogg, C.W. (1977) Coexistence in a hermit crab species ensemble. Biological Bulletin 153, 133144. http://www.jstor.org/stable/1540697.Google Scholar
Krebs, C.J. (1989) Ecological methodology. New York, NY: Harper Collins, 654 pp.Google Scholar
Mantelatto, F.L.M. and García, R.B. (2000) Shell utilization pattern of the hermit crab Calcinus tibicen (Diogenidae) from southern Brazil. Journal of Crustacean Biology 20, 460467. doi: 10.1651/0278-0372(2000)020[0460:SUPOTH]2.0.CO;2.Google Scholar
Markham, J.C. (1968) Notes on the growth pattern and shell-utilization of the hermit crab Pagurus bernhardus (L.). Ophelia 5, 189205. doi: 10.1080/00785326.6812.10407609.Google Scholar
Metcalfe, N.B. and Monaghan, P. (2001) Compensation for a bad start: grow now, pay later? Trends in Ecology and Evolution 16, 254260. doi: 10.1016/S0169-5347(01)02124-3.Google Scholar
Mima, A., Wada, S. and Goshima, S. (2003) Antipredator defence of the hermit crab Pagurus filholi induced by predatory crabs. Oikos 102, 104110. doi: 10.1034/j.1600-0706.2003.12361.x.Google Scholar
Morris, A.P. (1974) A field guide to Pacific Coast shells, including shells of Hawaii and the Gulf of California. Boston: Houghton Mifflin, 297 pp.Google Scholar
Orihuela, B., Diaz, H., Forward, R.B. and Rittschof, D. (1992) Orientation of the hermit crab Clibanarius vittatus (Bosc) to visual cues: effects of mollusk chemical cues. Journal of Experimental Marine Biology and Ecology 164, 193208. doi: 10.1016/0022-0981(92)90174-9.Google Scholar
Pechenik, J.A. and Lewis, S. (2000) Avoidance of drilled gastropod shells by the hermit crab Pagurus longicarpus at Nahant, Massachusetts. Journal of Experimental Marine Biology and Ecology 253, 1732. doi: 10.1016/S0022-0981(00)00234-3.Google Scholar
Pianka, ER (1975) Niche relations of desert lizards. In Cody, M. and Diamond, J. (eds) Ecology and evolution of communities. Cambridge, MA: Harvard University Press, pp. 292314.Google Scholar
Reese, E.S. (1969) Behavioral adaptations of intertidal hermit crabs. American Zoology 9, 343355. http://www.jstor.org/stable/3881807.Google Scholar
Rittschof, D. (1980) Enzymatic production of small molecules attracting hermit crabs to simulated gastropod predation sites. Journal of Chemical Ecology 6, 665675. doi: 10.1007/BF00987677.Google Scholar
Rittschof, D., Tsai, D.W., Massey, P.G., Blanco, L., Kueber, G.L. and Haas, R.J. Jr (1992) Chemical mediation of behavior in hermit crabs: alarm and aggregation cues. Journal of Chemical Ecology 18, 959984. doi: 10.1007/BF00980056.Google Scholar
Rutherford, J.D. (1977) Removal of living snails from their shells by a hermit crab. Veliger 19, 438439.Google Scholar
Sant'Anna, B.S., Dominciano, L.C.D., Buozi, S.F. and Turra, A. (2012) Is shell partitioning between the hermit crabs Pagurus brevidactylus and Pagurus criniticornis explained by interference and/or exploitation competition? Marine Biology Research 8, 662669. doi: 10.1080/17451000.2011.653371.Google Scholar
Spight, T.M. (1977) Availability and use of shell by intertidal hermit crabs. Biological Bulletin 152, 120133.Google Scholar
Straughan, N.A. and Gosselin, L.A. (2004) Ontogenetic changes in shell preferences and resource partitioning by the hermit crabs Pagurus hirsutiusculus and P. granosimanus. Journal of Experimental Marine Biology and Ecology 451, 18. doi: 10.1016/j.jembe.2013.10.028.Google Scholar
Taylor, P.R. (1981) Hermit crab fitness: the effect of shell condition and behavioral adaptations on environmental resistance. Journal of Experimental Marine Biology and Ecology 52, 205218. doi: 10.1016/0022-0981(81)90037-X.Google Scholar
Turra, A. and Denadai, M.R. (2004) Interference and exploitation components in interspecific competition between sympatric intertidal hermit crabs. Journal of Experimental Marine Biology and Ecology 31, 183193. doi: 10.1016/j.jembe.2004.04.008.Google Scholar
Turra, A. and Leite, F.P.P. (2003) The molding hypothesis: linking shell use with hermit crab growth, morphology, and shell-species selection. Marine Ecology Progress Series 265, 155163. http://www.jstor.org/stable/24867533.Google Scholar
Vance, R.R. (1972) The role of shell adequacy in behavioral interactions involving hermit crabs. Ecology 53, 10751083. http://www.jstor.org/stable/1935419.Google Scholar
Webster, D.R. and Weissburg, M.J. (2009) The hydrodynamics of chemical cues among aquatic organisms. Annual Reviews of Fluid Mechanics 41, 7390. doi: 10.1146/annurev.fluid.010908.165240.Google Scholar
Wei, L.Z., Zhang, X.M., Li, J. and Huang, G.Q. (2008) Compensatory growth of Chinese shrimp, Fenneropenaeus chinensis following hypoxic exposure. Aquaculture International 16, 455470. doi: 10.1007/s10499-007-9158-2.Google Scholar
Zar, J.H. (2010) Biostatistical analysis, 5th edition. Upper Saddle River, NJ: Prentice-Hall, 944 pp.Google Scholar