Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T12:07:47.142Z Has data issue: false hasContentIssue false

Reproductive cycle of the Patagonian scallop Zygochlamys patagonica in the south-western Atlantic

Published online by Cambridge University Press:  14 May 2008

Silvana Campodónico*
Affiliation:
Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo V. Ocampo No.1, (B7602HSA) Mar del Plata, Argentina
Gustavo Macchi
Affiliation:
Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo V. Ocampo No.1, (B7602HSA) Mar del Plata, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (CONICET)
Betina Lomovasky
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (CONICET) Laboratorio de Ecología, Departamento Biología (FCEyN), Universidad Nacional de Mar del Plata. CC 573 Correo Central (B7600WAG) Mar del Plata, Argentina
Mario Lasta
Affiliation:
Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo V. Ocampo No.1, (B7602HSA) Mar del Plata, Argentina
*
Correspondence should be addressed to: Silvana CampodónicoInstituto Nacional de Investigación y Desarrollo Pesquero (INIDEP)Paseo V. Ocampo No.1 (B7602HSA) Mar del PlataArgentina email: scampodo@inidep.edu.ar

Abstract

The reproductive cycle of Zygochlamys patagonica was studied from October 1999 to February 2001 in a bed located in the south-western Atlantic (Reclutas bed 39°24′ S–55°56′W). Scallops were collected monthly and the sexual maturity stages were determined histologically (N = 508). Sex-ratio was 1:1 (t-test P > 0.05). The size of first sexual maturity was estimated from males of an average of 36.63 mm and females of 36.31 mm of shell height. The relative gonadal condition index (RGCI) showed an annual cycle, with higher values during winter–spring and lower values during summer–autumn; an inverse relationship for the relative muscle condition index (RMCI) was observed with maximum values in early summer. Thus, a reallocation of energy from soma to gonad appears to be inevitable to meet energy demand of gonad development. Seven histological stages of sexual maturity were established for both sexes: (1) immature; (2) early maturity; (3) advanced maturity,;(4) ripe; (5) spawning; (6) spent; and (7) recovery. Individuals in early and advanced maturity were found throughout the year; however, they were found more frequently between June and September. Spawning began in October (early spring) and extended through March (late summer–early autumn) coexisting with early and advanced maturity stages supported by the annual variation of the RGCI and the food availability into the system.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ansell, A.D. (1974) Seasonal changes in biochemical composition of the bivalve Chlamys septemradiata from the Clyde Sea area. Marine Biology 25, 8599.CrossRefGoogle Scholar
Baldoni, A. and Guerrero, R. (2000) Seasonal pattern of temperature over the outer shelf of the Argentinean Basin. In IV Jornadas Nacionales de Ciencias del Mar, Puerto Madryn, Argentina, pp. 36.Google Scholar
Barber, B.J. and Blake, N.J. (1983) Growth and reproduction of the bay scallop, Argopecten irradians (Lamark) at its southern distributional limit. Journal of Experimental Marine Biology and Ecology 66, 247258.CrossRefGoogle Scholar
Barber, B.J. and Blake, N.J. (2006) Reproductive physiology. In Shumway, S. and Parsons, G.J. (eds) Scallops: biology, ecology and aquaculture. 2nd edn. Amsterdam: Elsevier, pp. 357416.CrossRefGoogle Scholar
Bayne, B.L. (1976) Marine mussels: their ecology and physiology. Cambridge: Cambridge University Press.Google Scholar
Beninger, P.G. and Le Penec, M. (2006) Functional anatomy of scallops. In Shumway, S. and Parsons, G.J. (eds) Scallops: biology, ecology and aquaculture. 2nd edn. Amsterdam: Elsevier, pp. 123227.CrossRefGoogle Scholar
Bogazzi, E., Baldoni, A., Rivas, A., Martos, P., Reta, R., Orensanz, J.M., Lasta, M., Dell'Arciprete, P. and Werner, F. (2005) Spatial correspondence between areas of concentration of Patagonian scallop (Zygochlamys patagonica) and frontal systems in the southwestern Atlantic. Fisheries Oceanography 14, 359376.CrossRefGoogle Scholar
Brey, T. and Hain, S. (1992) Growth, reproduction and production of Lissarca notorcadensis (Bivalvia: Philobryidae) in the Weddell Sea, Antarctica. Marine Ecology Progress Series 82, 219226.CrossRefGoogle Scholar
Bricelj, V.M. and Shumway, S.E. (1991) Physiology: energy acquisition and utilization. In Shumway, S. (ed.) Scallops: biology, ecology and aquaculture. New York: Elsevier, pp. 305346.Google Scholar
Bricelj, V.M., Epp, J. and Malouf, R.E. (1987a) Intraspecific variation in reproductive and somatic growth cycles of bay scallops Argopecten irradians. Marine Ecology Progress Series 36, 123137.CrossRefGoogle Scholar
Bricelj, V.M., Epp, J. and Malouf, R.E. (1987b) Comparative physiology of young and old cohorts of bay scallops Argopecten irradians irradians (Lamarck): mortality, growth and oxygen consumption. Journal of Experimental Marine Biology and Ecology 112, 7391.CrossRefGoogle Scholar
Broon, M.J. and Mason, J. (1978) Growth and spawning in the pectinid Chlamys opercularis in relation to temperature and phytoplankton concentration. Marine Biology 47, 277285.CrossRefGoogle Scholar
Calvo, J., Morriconi, E. and Orler, P.M. (1998) Estrategias reproductivas de moluscos bivalves y equinoideos. In Boschi, E. (ed.) El mar Argentino y sus recursos pesqueros. INIDEP (Mar del Plata, Argentina) 2, 195231.Google Scholar
Campodónico, S., Macchi, G. and Lasta, M. (2004) Gonocorismo en la vieira patagónica Zygochlamys patagonica (King y Broderip, 1832) en el Banco Reclutas, Argentina. Revista de Investigación y Desarrollo Pesquero 16, 9195.Google Scholar
Carreto, J.I., Lutz, V., Carignan, M.O., Cucchi Colleoni, A.D. and De Marco, S.G. (1995) Hydrography and chlorophyll a in a transect from the coast to the shelf-break in the Argentinean Sea. Continental Shelf Research 15, 315336.CrossRefGoogle Scholar
Comely, C.A. (1974) Seasonal variations in the flash weights and biochemical content of the scallop Pecten maximus L. in the Clyde Sea area. Journal of the International Council for the Exploration of the Sea 35, 281295.Google Scholar
Darriba, S., San Juan, F. and Guerra, A. (2004) Reproductive cycle of the razor clam Ensis arcuatus (Jeffreys, 1865) in northwest Spain and its relation to environmental conditions. Journal of Experimental Marine Biology and Ecology 311, 101115.CrossRefGoogle Scholar
Defeo, O. and Brazeiro, A. (1994) Distribución, estructura poblacional y relaciones biométricas de la vieira Zygochlamys patagonica en aguas Uruguayas. Comunicaciones de la Sociedad Malacologica del Uruguay 7, 362367.Google Scholar
Delgado, M. and Perez Camacho, A. (2005) Histological study of the gonadal development of Ruditapes decussatus (L.) (Mollusca: Bivalvia) and its relationship with available food. Scientia Marina 69, 8797.Google Scholar
Eckelberger, K.J. and Davis, C.V. (1996a) Ultrastructure of the ovary and gametogenesis in the eastern oyster, Crassostrea virginica. I Ovary and oogenesis. Marine Biology 127, 7987.CrossRefGoogle Scholar
Eckelberger, K.J. and Davis, C.V. (1996b) Ultrastructure of the gonad and gametogenesis in the eastern oyster, Crassostrea virginica. II testes and spermatogenesis. Marine Biology 127, 8996.CrossRefGoogle Scholar
Gosling, E. (2003) Fisheries and management of natural populations. In Fishing new book. Bivalve mollusks: biology, ecology and culture. Oxford: Blackwell Science, pp. 225283.CrossRefGoogle Scholar
Gutiérrez, N. and Defeo, O. (2003) Development of new scallop Zygochlamys patagonica fishery in Uruguay: latitudinal and bathymetric patterns in biomass and population structure. Fisheries Research 62, 2136.CrossRefGoogle Scholar
Gutiérrez, N. and Defeo, O. (2005) Spatial patterns in population dynamics of the scallop Zygochlamys patagonica at the northern edge of its range. Journal of Shellfish Research 24, 877882.Google Scholar
Heilmayer, O. (2004) Environment, adaptation and evolution: scallop ecology across the latitudinal gradient. Reports for Polar and Marine Research. 480, Universität Bremen, Bremen, 161 pp.Google Scholar
Hunter, J.R., Macewicz, B.J., Lo, N.C. and Kimbrell, C.A. (1992) Fecundity, spawning and maturity of female Dover sole Microstomus pacificus, with an evaluation of assumptions and precision. Fisheries Bulletin 90, 101128.Google Scholar
Kendal, M. and Stuart, A. (1967) The advanced theory of statistics. 2. 2nd edn. New York: Hafner Publishing Co.Google Scholar
Lasta, M. and Bremec, C. (1997) Zygochlamys patagonica (King & Broderip, 1832): development of a new scallop fishery in the southwestern Atlantic Ocean. In Proceedings of the XI International Pectinid Workshop, La Paz, México 1, 138139.Google Scholar
Lasta, M. and Bremec, C. (1998) Zygochlamys patagonica in the Argentine Sea: a new scallop fishery. Journal of Shellfish Research 17, 103111.Google Scholar
Lasta, M. and Campodónico, S. (2006) Vieira Patagónica (Zygochlamys patagonica): operatividad de la flota, captura y desembarco de callo durante el año 2005. Informe Técnico INIDEP, no. 8, 14 pp.Google Scholar
Lasta, M. and Zampatti, E. (1981) Distribución de capturas de moluscos bivalvos de importancia comercial en el mar argentino. Resultados de las campañas de los B/I “Walther Herwig” y “Shinkai Maru”, años 1978 y 1979. INIDEP (Mar del Plata, Argentina), Contribución, 383, 128135.Google Scholar
Lasta, M., Valero, J., Brey, T. and Bremec, C. (2001) Zygochlamys patagonica beds on the Argentinean Shelf. Part II: Population dynamics of Z. patagonica. Archive of Fishery and Marine Research 49, 125137.Google Scholar
Lomovasky, B.J., Iribarne, O., Brey, T., Mackensen, A., Baldoni, A., Lasta, M. and Campodónico, S. (2007a) Annual growth line formation in the deep water Patagonian scallop Zygochlamys patagonica. In Proceedings of the 16th International Pectinid Workshop, Nova Scotia, Canada, pp. 154155.Google Scholar
Lomovasky, B.J., Lasta, M., Valiñas, M., Bruschetti, M., Ribeiro, P., Campodónico, S. and Iribarne, O. (2007b) Differences in shell morphology and internal growth pattern of the Patagonian scallop Zygochlamys patagonica in the four main beds across their SW Atlantic distribution range. Fisheries Research (In press, doi:10.1016/j.fishres.2007.09.006)Google Scholar
Luna González, A., Cáceres Martinez, C., Zúñiga Pacheco, C., Lopez Lopez, S. and Ceballos Vazquez, B.P. (2000) Reproductive cycle of Argopecten ventricosus (Sowerby 1842) (Bivalvia: Pectinidae) in the rada del Puerto de Pichilingue, B.C.S., Mexico and its relation to temperature, salinity and food. Journal of Shellfish Research 19, 107112.Google Scholar
MacDonald, B.A. and Bourne, N.F. (1987) Growth, reproductive output, and energy partitioning in Weathervane scallops, Patinopecten caurinus, from British Columbia. Canadian Journal Fisheries and Aquatic Science 44, 152160.CrossRefGoogle Scholar
MacDonald, B.A. and Thompson, R.J. (1986) Influence of temperature and food availability on the ecological energetics of the giant scallop Placopecten magellanicus. Marine Biology 93, 3748.CrossRefGoogle Scholar
MacDonald, B.A. and Thompson, R.J. (1988) Intraspecific variation in growth and reproduction in latitudinally differentiated populations of the giant scallop Placopecten magellanicus (Gmelin). Biological Bulletin. Marine Biological Laboratory, Woods Hole 175, 361371.CrossRefGoogle Scholar
Marshall, T., O'Brien, L., Koster, F.W., Morgan, J., Saborido-Rey, F., Secor, D.H., Wright, P.J., Mukhina, N.V. and Björnsson, H. (2003) Developing alternative indices of reproductive potential for use in fisheries management: case studies for stocks spanning an information gradient. Journal of Northwest Atlantic Fishery Science 33, 161190.CrossRefGoogle Scholar
Navarro, E., Iglesias, J.I. and Larrañaga, A. (1989) Interannual variation in the reproductive cycle and biochemical composition of the cockle Cerastoderma edule from Mundaca estuary (Biscay, North Spain). Marine Biology 101, 503511.CrossRefGoogle Scholar
Orensanz, J.M. (1986) Size, environment and density: the regulation of scallop stock and its management implications. Canadian Special Publication of Fisheries and Aquatic Sciences 92, 195227.Google Scholar
Orensanz, J.M. and Jamieson, G.S. (1998) The assessment and management of spatially structured stocks: an overview of the North Pacific Symposium on Invertebrate Stock Assessment and Management. Canadian Special Publication of Fisheries and Aquatic Sciences 125, 441459.Google Scholar
Orensanz, J.M., Parma, A.M. and Iribarne, O. (1991) Population dynamics and management of natural stocks. In Shunway, S. (ed.) Scallops: biology, ecology and aquaculture. Amsterdam: Elsevier, pp. 625714.Google Scholar
Paulet, Y.M., Lucas, A. and Gerard, A. (1988) Reproduction and larval development in two Pecten maximus (L.) populations from Brittany. Journal of Experimental Marine Biology and Ecology 119, 145156.CrossRefGoogle Scholar
Pearse, J.S., McClintock, J.B. and Bosch, I. (1991) Reproduction of Antarctic benthic marine invertebrates: tempos, modes and timing. American Zoologist 31, 6580.CrossRefGoogle Scholar
Rivas, A.L. and Piola, A.R. (2002) Vertical stratification on the shelf off northern Patagonia. Continental Shelf Research 22, 15491558.CrossRefGoogle Scholar
Robinson, W.E., Wehling, W.E., Morse, M.P. and McLeod, G.C. (1981) Seasonal changes in soft-body component indices and energy reserves in the Atlantic deep-sea scallop, Placopecten magellanicus. Fisheries Bulletin 79, 44458.Google Scholar
Romero, S.I., Piola, A.R., Charo, M. and García, C.E. (2006) Chlorophyll a variability off Patagonia based on SeaWiFS data. Journal of Geophysical Research 111, C05021, doi:10.1029/2005JC003244.CrossRefGoogle Scholar
Sastry, A.N. (1970) Reproductive physiological variation in latitudinally separated populations of the bay scallop, Aequipecten irradians Lamarck. Biological Bulletin. Marine Biological Laboratory, Woods Hole 138, 5665.CrossRefGoogle Scholar
Sastry, A.N. (1979) Pelecypoda (excluding Ostreidae). In Giese, C. and Pearse, J.S. (eds) Reproduction of marine invertebrates. New York: Academic Press, pp. 113292.CrossRefGoogle Scholar
Taylor, A.C. and Venn, T.J. (1979) Seasonal variation in weight and biochemical composition of the tissues of the queen scallop, Chlamys opercularis, from the Clyde Sea area. Journal of the Marine Biological Association of the UK 59, 605621.CrossRefGoogle Scholar
Underwood, A.J. (1997) Experiments in ecology. Cambridge: Cambridge University Press.Google Scholar
Valladares, C. and Stotz, W. (1996) Crecimiento de Chlamys patagonica (Bivalvia: Pectinidae) en dos localidades de la Región de Magallanes, Chile. Revista Chilena de Historia Natural 69, 321338.Google Scholar
Waloszek, D. and Waloszek, G. (1986) Ergebnisse der Forschungsreisen des FFS ‘Walther Herwig’ nach Südamerika, LXV. Vorkommen, Reproduktion, Wachstum und mogliche Nutzbakeit von Chlamys patagonica (King & Broderip, 1832) (Bivalvia, Pectinidae) auf dem Schelf von Argentinien. Archiv für Fishchereiwissenschaft 37, 6999.Google Scholar
Zaba, B.M. (1981) Glycogenolytic pathways in the mantle tissue of Mytilus edulis L. Marine Biology Letters 2, 6774.Google Scholar
Zar, J.H. (1999) Biostatistical analysis. 4th edn.Englewood Cliffs, New Jersey: Prentice-Hall, Inc.Google Scholar