Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T23:29:53.970Z Has data issue: false hasContentIssue false

Size-density strategy displayed by Diadema africanum linked with the stability of urchin-barrens in the Canary Islands

Published online by Cambridge University Press:  10 September 2014

Nancy Cabanillas-Terán*
Affiliation:
Laboratory of Marine Resources, Central Department of Research, Universidad Laica Eloy Alfaro de Manabí, Ciudadela Universitaria, Vía a San Mateo, Manta, Manabí, Ecuador, EC130802
José A. Martín
Affiliation:
Department of Biology, Marine Sciences Faculty, University of Las Palmas de Gran Canaria, 35017 Las Palmas de G.C.,Canary Islands, Spain
Ruber Rodríguez-Barreras
Affiliation:
Department of Biology, University of Puerto Rico, Río Piedras. PO Box 23360, San Juan 00931-3360, Puerto Rico
Ángel Luque
Affiliation:
Department of Biology, Marine Sciences Faculty, University of Las Palmas de Gran Canaria, 35017 Las Palmas de G.C.,Canary Islands, Spain
*
Correspondence should be addressed to: N. Cabanillas-Terán, Departamento Central de Investigación, Universidad Laica Eloy Alfaro de Manabí, Ciudadela Universitaria, Vía San Mateo, Manta, Manabí, Ecuador emails: nanchamex@gmail.com/nancy.cabanillas@uleam.edu.ec

Abstract

The sea urchin Diadema africanum is considered a key herbivore in sublittoral ecosystems of the Canary Islands. Spatial and temporal variability in population structure was carried out at Gran Canaria. We performed a morphometric and population density analysis during 2005, 2006 and 2007 at four sites in zones of Gran Canaria. The study considered a vertical gradient (5, 10 and 20 m depth) during both seasons, the cold season (February and March) and the warm season (October and November). The sea urchin D. africanum in Gran Canaria exhibited an overall density of 7.59 ± 2.92 urchin m−2. A two-way ANOVA evidenced spatial differences in mean abundance of the species, while seasonality was not relevant. The vertical analysis of the abundance of D. africanum showed differences, the smaller sizes appeared at greater depths. The Aristotle's lantern width decreased in a vertical gradient, being remarkable between 10 and 20 m. Findings of uniformity in size over time, a stable range of high densities and the lack of a relationship between the size of the sea urchins and the season reveals that the density–size strategy displayed by D. africanum which explains in turns the high stability of the urchin barrens, which, once developed, remain as areas of permanent desertification in subtidal depths throughout the Canary Archipelago.

Type
Review Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, F.M.A., Chicharo, L.M., Serräo, E. and Abreu, A.D. (2001) Algal cover and sea urchin spatial distribution at Madeira Island (NE Atlantic). Scientia Marina 65, 383392.Google Scholar
Alves, F.M.A., Chícharo, L.M., Serräo, E. and Abreu, A.D. (2003) Grazing by Diadema antillarum (Philippi) upon algal communities on rocky substrates. Scientia Marina 67, 307311.CrossRefGoogle Scholar
Balch, T., Scheibling, R.E., Harris, L.G., Chester, C.M. & Robinson, S.M.C. (1998) Variation in settlement of Strongylocentrotus droebachiensis in the northwest Atlantic: effect of spatial scale and sampling method. In Mooi, R. and Telford, M. (eds) Echinoderms. Rotterdam: A.A. Balkema, pp. 555–560.Google Scholar
Black, R., Johnson, M.S. and Trendall, J.T. (1982) Relative size of Aristotle's lantern in Echinometra mathaei occurring at different densities. Marine Biology 71, 101106.Google Scholar
Bortone, S.A., Van Tassell, J., Brito, A., Falcon, J.M. and Bundrick, C.M. (1991) A visual assessment of the inshore fishes and fishery resources of El Hierro, Canary Islands: a Baseline Survey. Scientia Marina 55, 529541.Google Scholar
Brito, A., Hernández, J.C., Falcón, J.M., García, N., González-Lorenzo, G., Gil-Rodríguez, M.C., Cruz-Reyes, A., Herrera, G., Sancho, A., Clemente, S., Cubero, E., Girard, D. and Barquín, J. (2004) El Erizo de lima (Diadema antillarum) una especie clave en los fondos rocosos litorales de Canarias. Makaronesia 6, 6886.Google Scholar
Brito, T., Cruz, E. and Moreno-Pérez, J.M. (1984) Fauna marina de las Islas Canarias. In Bacallado, J.J. (ed.) Fauna marina y terrestre del Archipiélago Canario. Edirca: Las Palmas de Gran Canaria, pp. 4265.Google Scholar
Cabanillas-Terán, N. (2009) Ecología y estatus trófico del erizo de mar Diadema antillarum (Philippi, 1845) en los fondos rocosos de las Islas Canarias (Gran Canaria, España). PhD thesis. Universidad de Las Palmas de Gran Canaria, Spain, available at: http://hdl.handle.net/10553/2589 (accessed 8 August 2014).Google Scholar
Clemente, S., Hernández, J.C., Rodríguez, A. and Brito, A. (2010) Identifying keystone predators and the importance of preserving functional diversity in sublittoral rocky bottoms. Marine Ecology Progress Series 413, 5567.CrossRefGoogle Scholar
Dayton, P.K., Currie, V., Gerrodette, T., Keller, B.D., Rosenthal, R. and Tresca, D.V. (1984) Patch dynamics and stability of some California kelp. Ecological Monographs 54, 254289.Google Scholar
Ebert, T.A. (1980) Relative growth of sea urchin jaws: an example of plastic resource allocation. Bulletin of Marine Science 30, 467474.Google Scholar
Ebert, T.A. (1983) Recruitment in echinoderms. In Jangoux, M. and Lawrence, J.M. (eds) Echinoderm studies. Rotterdam: A.A. Balkema, pp. 169203.Google Scholar
Entrambasaguas, L., Pérez-Ruzafa, A., García-Charton, J.A., Stobart, B. and Bacallado, J.J. (2008) Abundance, spatial distribution and habitat relationships of echinoderms in the Cabo Verde Archipelago (eastern Atlantic). Marine and Freshwater Research 59, 477488.CrossRefGoogle Scholar
García-Sanz, S., Navarro, P.G. and Tuya, F. (2014) Contrasting recruitment seasonality of sea urchin species in Gran Canaria, Canary Islands (eastern Atlantic). Mediterranean Marine Science 15, 475481.CrossRefGoogle Scholar
Garrido, M.J. (2003) Contribución al conocimiento de Diadema antillarum Philippi 1845, en Canarias. PhD thesis. Universidad de Las Palmas de Gran Canaria, Spain.Google Scholar
Hagen, N.T. and Mann, K.H. (1992) Functional response of the predators american lobster Homarus americanus (Milne-Edwards) and Atlantic wolffish Anarhichas lupus (L.) to increasing numbers of the green sea urchin Strongylocentrotus droebachiensis (Müller). Journal of Marine Experimental Biology and Ecology 159, 89112.CrossRefGoogle Scholar
Hendler, G., Miller, J.E., Pawson, D.L. and Kier, P.M. (1995) Sea stars, sea urchins, and allies. Echinoderms of Florida and the Caribbean. Washington, DC: Smithsonian Institution Press. Washington, DC and London, 390 pp.Google Scholar
Hernández, J.C., Clemente, S. and Brito, A. (2011) Effects of seasonality on the reproductive cycle of Diadema aff. antillarum in two contrasting habitats: implications for the establishment of a sea urchin fishery. Marine Biology 158, 26032615.CrossRefGoogle Scholar
Hernández, J.C., Clemente, S., Brito, A., Falcon, J.M., García, N. and Barquin, J. (2005) Estado de las Poblaciones de Diadema antillarum (Echinoidea: Diadematidae) y del recubrimiento de macroalgas en las Reservas Marinas de Canarias: Patrones de distribución espacial. Vieraea 33, 367383.Google Scholar
Hernández, J.C., Clemente, S., Sangil, C. and Brito, A. (2007) Actual status of Diadema aff. antillarum populations and macroalgal cover in the Marine Protected Areas comparing to a Highly Fished Area (Canary Islands–Eastern Atlantic Ocean). Aquatic Conservation: Marine and Freshwater Ecosystems 18, 10911108.CrossRefGoogle Scholar
Hernández, J.C., Clemente, S., Sangil, C. and Brito, A. (2008) The key role of the sea urchin Diadema aff. antillarum in controlling macroalgae assemblages throughout the Canary Islands (eastern subtropical Atlantic): an spatio-temporal approach. Marine Environmental Research 66, 259270.CrossRefGoogle ScholarPubMed
Hughes, T.P. (1994) Catastrophes, phase shifts and large-scale degradation of a Caribbean coral reef. Science 265, 15471551.CrossRefGoogle ScholarPubMed
Hyman, L.H. (1955) The invertebrates: Echinodermata (Volume 4). New York: McGraw-Hill.Google Scholar
Lawrence, J.M. (1975) On the relationships between marine plants and sea urchins. Oceanography and Marine Biology: an Annual Review 13, 213286.Google Scholar
Lessios, H.A. (2013) ‘Natural’ population density fluctuations of echinoids. Do they help predict the future? In Fernández-Palacios, J.M., de Nascimento, L., Hernández, J.C., Clemente, S., González, A. and Díaz-González, J.P. (eds) Climate change perspectives from the Atlantic: past, present and future. Servicios de Publicaciones, Universidad de La Laguna, pp. 341359.Google Scholar
Lessios, H.A., Garrido, M.J. and Kessing, B.D. (2001a) Demographic history of Diadema antillarum, a keystone herbivore on Caribbean reefs. Proceedings of the Royal Society of London Series B—Biological Sciences 268, 23472353.Google Scholar
Lessios, H.A., Kessing, B.D. and Pearse, J.S. (2001b) Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema . Evolution 55, 955975.CrossRefGoogle ScholarPubMed
Levitan, D.R. (1988) Density-dependent size regulation and negative growth in the sea urchin Diadema antillarum Philippi. Oecologia 76, 627629.Google Scholar
Levitan, D.R. (1989) Density-dependent size regulation in Diadema antillarum: effects on fecundity and survivorship. Ecology 70, 14141424.Google Scholar
Levitan, D.R. (1991) Skeletal changes in the test and jaws of the sea urchin Diadema antillarum when food-limited. Marine Biology 106, 431435.CrossRefGoogle Scholar
Levitan, D.R. and Sewell, M.A. (1998) Male abundance and fertilization success in free-spawning marine invertebrates: review of the evidence and fisheries implications. In Jamieson, G.S. and Campbell, A. (eds) Proceedings of the North Pacific Symposium on Invertebrate Stock Assessment and Management. Volume 125. Canadian Special Publication in Fisheries and Aquatic Science, National Research Press, Canada, pp. 159164.Google Scholar
McClanahan, T.R. (1994) Kenyan coral reef lagoon fish: associations with reef management, complexity and sea urchins. Coral Reefs 13, 231241.Google Scholar
McClanahan, T.R. and Curtis, J.D. (1991) Population regulation of the rock-boring sea urchin Echinometra mathaei de Blainville. Journal of Experimental Marine Biology and Ecology 147, 121146.Google Scholar
McClanahan, T.R., Kamukuru, A.T., Muthiga, N.A., Yebio, M.G. and Obura, D. (1996) Effect of sea urchin reductions on algae, coral, and fish populations. Conservation Biology 10, 136154.CrossRefGoogle Scholar
Menge, B.A. (1992) Community regulation: under what conditions are bottom-up factors important on rocky shores? Ecology 73, 755765.CrossRefGoogle Scholar
Randall, J.E., Schroeder, R.E. and Starck, W.A. (1964) Notes on the biology of the echinoid Diadema antillarum . Caribbean Journal of Science 4, 421433.Google Scholar
R Core Team (2013) R: a language and environment for statistical computing. Vienna: R Foundation for statistical computing. Available at: http://www.R-project.org/ (accessed 8 August 2014).Google Scholar
Roberts, D.E., Cummins, S.P., Davis, A.R. and Chapman, M.G. (2006) Structure and dynamics of sponge-dominated assemblages on exposed and sheltered temperate reefs. Marine Ecology Progress Series 321, 1930.Google Scholar
Rodríguez, A., Hernández, J.C., Clemente, S. and Coppard, S.E. (2013) A new species of Diadema (Echinodermata: Echinoidea: Diadematidae) from the eastern Atlantic Ocean and a neotype designation of Diadema antillarum (Philippi, 1845). Zootaxa 3636, 144170.Google Scholar
Sala, E. and Ballesteros, E. (1997) Partitioning of space and food resources by three fish of the genus Diplodus (Sparidae) in a Mediterranean rocky infralittoral ecosystem. Marine Ecology Progress Series 152, 273283.Google Scholar
Sala, E., Boudouresque, C.F. and Harmelin-Vivien, M. (1998) Fishing, trophic cascades and the structure of algal assemblages: evaluation of an old but untested paradigm. Oikos 82, 425439.Google Scholar
Sala, E. and Zabala, M. (1996) Fish predation and the structure of sea urchin Paracentrotus lividus populations in the NW Mediterranean. Marine Ecology Progress Series 140, 7181.Google Scholar
Sammarco, P.W. (1982) Echinoid grazing as a structuring force in coral communities: whole reef manipulations. Journal of Experimental Marine Biology and Ecology 61, 3155.Google Scholar
Tuya, F., Boyra, A., Sánchez-Jerez, P., Barbera, C. and Haroun, R.J. (2004a) Relationships between rocky-reef fish assemblages, the sea urchin Diadema antillarum and macroalgae throughout the Canarian Archipelago. Marine Ecology Progress Series 278, 157169.Google Scholar
Tuya, F., Boyra, A., Sánchez-Jerez, P., Barbera, C. and Haroun, R.J. (2004b) Can one species determine the structure of the benthic community on a temperate rocky reef? The case of the long-spined sea-urchin Diadema antillarum (Echinodermata: Echinoidea) in the eastern Atlantic. Hydrobiologia 519, 211214.Google Scholar
Tuya, F., Cisneros-Aguirre, J., Ortega-Borges, L. and Haroun, R.J. (2007) Bathymetric segregation of sea urchins on reefs of the Canarian Archipelago: role of flow-induced forces. Estuarine, Coastal Shelf Science 73, 481488.Google Scholar
Tuya, F., Martín, J.A. and Luque, A. (2004c) Patterns of nocturnal movement of the long-spined sea urchin Diadema antillarum (Phillipi) in Gran Canaria (the Canary Islands, Central East Atlantic Ocean). Helgoland Marine Research 58, 2631.Google Scholar
Tuya, F., Ortega-Borges, L., Del Rosario-Pinilla, A.B. and Haroun, R.J. (2006) Spatio-temporal variability in a key herbivore, the long-spined black sea urchin (Diadema antillarum, Echinodermata: Echinoidea) in the Canary Islands. Journal of the Marine Biological Association of the United Kingdom 86, 791797.Google Scholar
Tuya, F., Sánchez-Jerez, P. and Haroun, R.J. (2005) Influence of fishing and functional group of algae on sea urchin control of algal communities in the eastern Atlantic. Marine Ecology Progress Series 287, 255260.CrossRefGoogle Scholar
Uthicke, S., Schaffelke, B. and Byrne, M. (2009) A boom-bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecological Monographs 79, 324.Google Scholar
Vanderklift, M.A. and Kendrick, G.A. (2004) Variation in abundances of herbivorous invertebrates in temperate subtidal rocky reef habitats. Marine and Freshwater Research 55, 93103.Google Scholar
Young, C.M. and Chia, F.S. (1982) Factors controlling spatial distribution of the sea cucumber Psolus chitonoides: settling and post-settling behavior. Marine Biology 69, 195205.Google Scholar
Zar, J.H. (2010) Biostatistical analysis. 5th edition. Upper Saddle River, NJ: Prentice-Hall.Google Scholar