Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-04-30T16:28:30.029Z Has data issue: false hasContentIssue false

The curious case of Cladonia luteoalba: no support for its distinction

Published online by Cambridge University Press:  13 December 2022

Ivana Černajová*
Affiliation:
Department of Botany, Faculty of Science, Charles University, Prague, Czechia Institute of Botany of the Czech Academy of Sciences, Průhonice, Czechia
Jana Steinová
Affiliation:
Department of Botany, Faculty of Science, Charles University, Prague, Czechia
Zuzana Škvorová
Affiliation:
Department of Botany, Faculty of Science, Charles University, Prague, Czechia
Pavel Škaloud
Affiliation:
Department of Botany, Faculty of Science, Charles University, Prague, Czechia
*
Author for correspondence: Ivana Černajová. E-mail: ivkacerka@gmail.com

Abstract

Cladonia luteoalba shows a specific pattern in chemical variability. Its chemotype coincides with that of the associated Cladonia thalli. This has led to the formation of various hypotheses, but its true nature has never been clarified. We collected C. luteoalba in Central Europe and Norway. The chemotypes were detected by TLC and the mycobionts and photobionts were identified by Sanger sequencing of ITS rDNA. Mycobiont cultures were obtained and Illumina metabarcoding of the fungal ITS1 rDNA region was performed targeting minor mycobionts within the thalli. None of the methods supported C. luteoalba as a distinct Cladonia species. In phylogenetic analyses, it was placed in C. straminea and the C. coccifera agg., following the pattern in chemistry. No minor Cladonia were detected by metabarcoding or cultivation. Thus, C. luteoalba remains enigmatic as our data did not support its distinction as a separate Cladonia species.

Type
Standard Paper
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of the British Lichen Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahti, T (1965) Some notes on British Cladoniae. Lichenologist 3, 8488.Google Scholar
Ahti, T, Stenroos, S and Moberg, R (2013) Nordic Lichen Flora Vol. 5 Cladoniaceae. Museum of Evolution, Uppsala University, 117pp.Google Scholar
Andrews, S (2010) FastQC: a quality control tool for high throughput sequence data.[WWW resource] URL https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.Google Scholar
Báilint, M, Schmidt, P-A, Sharma, R, Thines, M and Schmitt, I (2014) An Illumina metabarcoding pipeline for fungi. Ecology and Evolution 4, 26422653.CrossRefGoogle Scholar
Burgaz, AR, Ahti, T and Pino-Bodas, R (2020) Mediterranean Cladoniaceae. Madrid: Spanish Lichen Society.Google Scholar
Castresana, J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540552.CrossRefGoogle ScholarPubMed
Cubero, OF, Crespo, A, Fatehi, J and Bridge, PD (1999) DNA extraction and PCR amplification method suitable for fresh, herbarium stored, lichenized, and other fungi. Plant Systematics and Evolution 216, 243249.Google Scholar
Dal, Grande F, Widmer, I, Wagner, HH and Scheidegger, C (2012) Vertical and horizontal photobiont transmission within populations of a lichen symbiosis. Molecular Ecology 21, 31593172.Google Scholar
Darriba, T, Taboada, GL, Doallo, R and Posada, D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.10.1038/nmeth.2109CrossRefGoogle ScholarPubMed
Dormann, CF, Frueund, J, Bluethgen, N and Gruber, B (2009) Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecology Journal 2, 724.CrossRefGoogle Scholar
Elvebakk, A and Hertel, H (1996) Part 6. Lichens. In Elvebakk, A and Prestrud, P (eds), A Catalogue of Svalbard Plants, Fungi, Algae and Cyanobacteria. Oslo: Norsk Polarinstitutt Skrifter, pp. 271359.Google Scholar
Ertz, D, Guzow-Krzemińska, B, Thor, G, Łubek, A and Kukwa, M (2018) Photobiont switching causes changes in the reproduction strategy and phenotypic dimorphism in the Arthoniomycetes. Scientific Reports 8, 4952.CrossRefGoogle ScholarPubMed
Gardes, M and Bruns, T (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2, 113118.CrossRefGoogle Scholar
Gerson, U (1973) Lichen-arthropod associations. Lichenologist 5, 434443.CrossRefGoogle Scholar
Grewe, F, Lagostina, E, Wu, H, Printzen, C and Lumbsch, HT (2018) Population genomic analyses of RAD sequences resolves the phylogenetic relationship of the lichen-forming fungal species Usnea antarctica and Usnea aurantiacoatra. MycoKeys 43, 91113.10.3897/mycokeys.43.29093CrossRefGoogle Scholar
Hawksworth, DL (1977) Taxonomic and biological observations on the genus Lichenoconium (Sphaeropsidales). Persoonia 9, 159198.Google Scholar
Ingólfsdóttir, K (2002) Usnic acid. Phytochemistry 61, 729736.CrossRefGoogle ScholarPubMed
Kanz, B, Brackel, W von, Cezanne, R, Eichler, M, Hohmann, M-L, Teuber, D and Printzen, C (2015) Molekulargenetische Untersuchung zum Vorkommen der Rentierflechte Cladonia stygia in Hessen. Botanik und Naturschutz in Hessen 28, 520.Google Scholar
Katoh, K, Rozewicki, J and Yamada, KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20, 11601166.10.1093/bib/bbx108CrossRefGoogle ScholarPubMed
Kim, JI, Kim, YJ, Nam, SW, So, JE, Hong, SG, Choi, H-G and Shin, W (2020) Taxonomic study of three new Antarctic Asterochloris (Trebouxiophyceae) based on morphological and molecular data. Algae 35, 1732.10.4490/algae.2020.35.2.23CrossRefGoogle Scholar
Kotelko, R and Piercey-Normore, MD (2010) Cladonia pyxidata and C. pocillum; genetic evidence to regard them as conspecific. Mycologia 102, 534545.Google ScholarPubMed
Lagostina, E, Dal, Grande F, Andreev, M and Printzen, C (2018) The use of microsatellite markers for species delimitation in Antarctic Usnea subgenus Neuropogon. Mycologia 110, 10471057.CrossRefGoogle ScholarPubMed
Mahé, F, Rognes, T, Quince, C, de Vargas, C and Dunthorn, M (2015) Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ 3, e1420.CrossRefGoogle ScholarPubMed
Millanes, AM, Westberg, M, Wedin, M and Diederich, P (2012) Tremella diploschistina (Tremellomycetes, Basidiomycota, Fungi), a new lichenicolous species growing on Diploschistes. Lichenologist 44, 321332.CrossRefGoogle Scholar
Millanes, AM, Diederich, P, Westberg, M, Pippola, E and Wedin, M (2015) Tremella cetrariellae (Tremellales, Basidiomycota, Fungi), a new lichenicolous fungus on Cetrariella delisei. Lichenologist 47, 359368.CrossRefGoogle Scholar
Moya, P, Chiva, S, Molins, A, Jadrná, I, Škaloud, P, Peksa, O and Barreno, E (2018) Myrmecia israeliensis as the primary symbiotic microalga in squamulose lichens growing in European and Canarian terricolous communities. Fottea 18, 7285.CrossRefGoogle Scholar
Nelsen, MP and Gargas, A (2009) Symbiont flexibility in Thamnolia vermicularis (Pertusariales: Icmadophilaceae). Bryologist 112, 404417.CrossRefGoogle Scholar
Orange, A, James, PW and White, FJ (2010) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Østhagen, H (1972) The chemical strains in Cladonia luteoalba Wils. et Wheld. and their distribution. Norwegian Journal of Botany 19, 3741.Google Scholar
Piercey-Normore, MD and DePriest, PT (2001) Algal switching among lichen symbioses. American Journal of Botany 88, 14901498.Google ScholarPubMed
Piercey-Normore, MD, Ahti, T and Goward, T (2010) Phylogenetic and haplotype analyses of four segregates within Cladonia arbuscula s.l. Botany 88, 397408.CrossRefGoogle Scholar
Pino-Bodas, R, Burgaz, AR and Martín, MP (2010 a) Elucidating the taxonomic rank of Cladonia subulata versus C. rei (Cladoniaceae). Mycotaxon 113, 311326.10.5248/113.311CrossRefGoogle Scholar
Pino-Bodas, R, Martín, MP and Burgaz, AR (2010 b) Insight into the Cladonia convoluta-C. foliacea (Cladoniaceae, Ascomycota) complex and related species, revealed through morphological, biochemical and phylogenetic analyses. Systematics and Biodiversity 8, 575586.CrossRefGoogle Scholar
Pino-Bodas, R, Martín, MP, Burgaz, AR and Lumbsch, T (2013) Species delimitation in Cladonia (Ascomycota): a challenge to the DNA barcoding philosophy. Molecular Ecology Resources 13, 10581068.Google Scholar
Pino-Bodas, R, Burgaz, AR, Martín, MP, Ahti, T, Stenroos, S, Wedin, M and Lumbsch, HT (2015) The phenotypic features used for distinguishing species within the Cladonia furcata complex are highly homoplasious. Lichenologist 47, 287303.CrossRefGoogle Scholar
Pino-Bodas, R, Sanderson, N, Cannon, P, Aptroot, A, Coppins, B, Orange, A and Simkin, J (2021) Lecanorales: Cladoniaceae, including the genera Cladonia, Pilophorus and Pycnothelia. Revisions of British and Irish Lichens 19, 145.Google Scholar
R Core Team (2021) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. [WWW resource] URL https://www.R-project.org/.Google Scholar
Ronquist, F, Teslenko, M, van der Mark, P, Ayres, D, Darling, A, Hohna, S, Larget, B, Liu, L, Suchard, MA and Huelsenbeck, JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539542.CrossRefGoogle ScholarPubMed
Sandstede, H (1938) Erganzungen zu Wainios Monographia Cladoniarum Universalis, unter besonderer Beriicksichtigung des Verhaltens zu Asahinas Diaminprobe. Repertorium Specierum Novarum Regni Vegetabilis 103, 1103.Google Scholar
Santesson, R and Tønsberg, T (1994) Arthrorhaphis aeruginosa and A. olivaceae, two new lichenicolous fungi. Lichenologist 26, 295299.Google Scholar
Siddiqi, MR and Hawksworth, DL (1982) Nematodes associated with galls on Cladonia glauca, including two new species. Lichenologist 14, 175184.CrossRefGoogle Scholar
Škaloud, P and Peksa, O (2010) Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Molecular Phylogenetics and Evolution 54, 3646.CrossRefGoogle ScholarPubMed
Škvorová, Z, Černajová, I, Steinová, J, Peksa, O, Moya, P and Škaloud, P (2022) Promiscuity in lichens follows clear rules: partner switching in Cladonia is regulated by climatic factors and soil chemistry. Frontiers in Microbiology 12, 781585.CrossRefGoogle ScholarPubMed
Spribille, T, Tuovinen, V, Resl, P, Vanderpool, D, Wolinski, H, Aime, MC, Schneider, K, Stabentheiner, E, Toome-Heller, M, Thor, G, et al. (2016) Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353, 488492.CrossRefGoogle ScholarPubMed
Steinová, J, Stenroos, S, Grube, M and Škaloud, P (2013) Genetic diversity and species delimitation of the zeorin-containing red-fruited Cladonia species (lichenized Ascomycota) assessed with ITS rDNA and β-tubulin data. Lichenologist 45, 665684.CrossRefGoogle Scholar
Steinová, J, Holien, H, Košuthová, A and Škaloud, P (2022) An exception to the rule? Could photobiont identity be a better predictor of lichen phenotype than mycobiont identity? Journal of Fungi 8, 275.CrossRefGoogle Scholar
Stenroos, S (1990) Cladonia luteoalba – an enigmatic Cladonia. Karstenia 30, 2732.CrossRefGoogle Scholar
Stenroos, S, Pino-Bodas, R, Weckman, D and Ahti, T (2015) Phylogeny of Cladonia uncialis (Cladoniaceae, Lecanoromycetes) and its allies. Lichenologist 47, 215231.Google Scholar
Stenroos, S, Pino-Bodas, R, Hyvönen, J, Lumbsch, HT and Ahti, T (2019) Phylogeny of the family Cladoniaceae (Lecanoromycetes, Ascomycota) based on sequences of multiple loci. Cladistics 35, 351384.10.1111/cla.12363CrossRefGoogle ScholarPubMed
Stocker-Wörgötter, E and Hager, A (2008) Appendix: culture methods for lichens and lichen symbionts. In Nash, TH, III (ed.), Lichen Biology, 2nd Edn. New York: Cambridge University Press, pp. 353363.CrossRefGoogle Scholar
Vančurová, L, Muggia, L, Peksa, O, Řídká, T and Škaloud, P (2018) The complexity of symbiotic interactions influences the ecological amplitude of the host: a case study in Stereocaulon (lichenized Ascomycota). Molecular Ecology 27, 30163033.CrossRefGoogle Scholar
Vančurová, L, Kalníková, V, Peksa, O, Škvorová, Z, Malíček, J, Moya, P, Chytrý, K, Černajová, I and Škaloud, P (2020) Symbiosis between river and dry lands: phycobiont dynamics on river gravel bars. Algal Research 51, 102062.CrossRefGoogle Scholar
Velmala, S, Myllys, L, Halonen, P, Goward, T and Ahti, T (2009) Molecular data show that Bryoria fremontii and B. tortuosa (Parmeliaceae) are conspecific. Lichenologist 41, 231242.10.1017/S0024282909008573CrossRefGoogle Scholar
Větrovský, T, Baldrian, P and Morais, D (2018) SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34, 22922294.Google ScholarPubMed
Wheldon, JA and Wilson, A (1907) The Flora of West Lancashire. Liverpool: Henry Young and Sons.Google Scholar
White, TJ, Bruns, T, Lee, S and Taylor, J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, MA, Gelfand, DH, Sninsky, JJ and White, TJ (eds), PCR Protocols: a Guide to Methods and Applications. San Diego: Academic Press, pp. 315322.Google Scholar
Williams, L, Colesie, C, Ullmann, A, Westberg, M, Wedin, M and Büdel, B (2017) Lichen acclimation to changing environments: photobiont switching vs. climate-specific uniqueness in Psora decipiens. Ecology and Evolution 7, 25602574.CrossRefGoogle ScholarPubMed
Zamora, JC, Millanes, AM, Etayo, J and Wedin, M (2018) Tremella mayrhoferi, a new lichenicolous species on Lecanora allophana. Herzogia 31, 666676.Google Scholar
Zwickl, DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. thesis, University of Texas at Austin.Google Scholar