Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T22:13:09.446Z Has data issue: false hasContentIssue false

A hidden basidiolichen rediscovered: Omphalina oreades is a separate species in the genus Lichenomphalia (Basidiomycota: Agaricales: Hygrophoraceae)

Published online by Cambridge University Press:  19 September 2017

Robert LÜCKING
Affiliation:
Freie Universität Berlin, Königin-Luise-St 6–8, 14195 Berlin, Germany
R. Greg THORN
Affiliation:
Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, Ontario, CanadaN6A 5B7
Irja SAAR
Affiliation:
Institute of Ecology and Earth Sciences, University of Tartu, Ravila St. 14A, 50411 Tartu, Estonia
Michele D. PIERCEY-NORMORE
Affiliation:
School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, 20 University Drive, Corner Brook, Newfoundland and Labrador, CanadaA2H 5G4
Bibiana MONCADA
Affiliation:
Licenciatura en Biología, Universidad Distrital Francisco José de Caldas, Cra. 4 No. 26D-54, Bogotá D.C., Colombia; and Science & Education, The Field Museum, 1400 South Lake Shore, Chicago, IL 60605, USA
Jennifer DOERING
Affiliation:
Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, CanadaR3T 2N2
Henry MANN
Affiliation:
School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, 20 University Drive, Corner Brook, Newfoundland and Labrador, CanadaA2H 5G4
Renée LEBEUF
Affiliation:
775, rang du Rapide Nord, Saint-Casimir, Quebec, Canada, G0A 3L0
Maria VOITK
Affiliation:
13 Maple St., Humber Village, Newfoundland and Labrador, CanadaA2H 2N2.
Andrus VOITK*
Affiliation:
13 Maple St., Humber Village, Newfoundland and Labrador, CanadaA2H 2N2.

Abstract

Molecular studies have shown the type collection of Omphalina oreades to be conspecific with a small brown basidiolichen from the Appalachian range in Newfoundland, both with 4-spored basidia. Two sequences deposited in GenBank, originally identified as O. grisella, fell in the same clade. Sequences of the type collection of Omphalia grisella, with 2-spored basidia, formed a sister clade together with two GenBank deposits, one identified as O. grisella and the other as Omphalina velutina. Omphalina oreades is recombined here as Lichenomphalia oreades comb. nov., and the species redescribed and illustrated. Sequences of the internal transcribed spacer regions of nuclear ribosomal DNA (ITS rDNA) from the algae associated with two collections of L. oreades fell within a highly supported clade with members of an undetermined species of Coccomyxa. The most abundant algal ribosomal large subunit sequence from granules at the base of a different collection matched GenBank sequences identified as Chloroidium ellipsoideum, which is probably either a free-living algal species or a partner to a species of Trapeliopsis. The second most abundant sequence matched Coccomyxa subellipsoidea and is the most likely photobiont of L. oreades. Further studies are required to elucidate the relationship of L. velutina to these taxa.

Type
Articles
Copyright
© British Lichen Society, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asemaninejad, A., Weerasuriya, N., Gloor, G. B., Lindo, Z. & Thorn, R. G. (2016) New primers for discovering fungal diversity using nuclear large ribosomal DNA. PLoS ONE 11: e0159043.CrossRefGoogle ScholarPubMed
Barrasa, J. M. & Rico, V. J. (2001) Lichenized species of Omphalina (Tricholomataceae) in the Iberian Peninsula. Lichenologist 33: 371386.Google Scholar
Beiggi, S. & Piercey-Normore, M. D. (2007) Evolution of ITS ribosomal RNA secondary structures in fungal and algal symbionts of selected species of Cladonia sect. Cladonia (Cladoniaceae, Ascomycotina). Journal of Molecular Evolution 64: 528542.CrossRefGoogle ScholarPubMed
Bigelow, H. E. (1968) Contribution to the fungus flora of northeastern North America. IV. Rhodora 68: 175191.Google Scholar
Bigelow, H. E. (1983) Some clampless species of Clitocybe . Cryptogamie, Mycologie 4: 9398.Google Scholar
Bigelow, H. E. (1985) North American species of Clitocybe. II. Beihefte zur Nova Hedwigia 81: 281471.Google Scholar
Clémençon, H. (1982) Kompendium der Blätterpilze. Europäische omphalinoide Tricholomaceae. Zeitschrift für Mykologie 48: 195237.Google Scholar
Consortium of Pacific Northwest Herbaria (2016) URL http://www.pnwherbaria.org/. (Accessed 2 March 2017).Google Scholar
Courtecuisse, R. (2008) Novitates. 5. Nouvelles combinaisons et nouveaux noms nécessaires suite à la mise au point du référentiel des noms de champignons présents sur le territoire national métropolitain (1 - Basidiomycètes). Documents Mycologiques 34 (135–136):4852.Google Scholar
Contu, M. & La Rocca, S. (1999) Funghi della zona mediterranea insulare italiana. Funghi non delineati 9: 148.Google Scholar
Darienko, T., Gustavs, L., Mudimu, O., Rad Menendez, C., Schumann, R., Karsten, U., Friedl, T. & Pröschold, T. (2010) Chloroidium, a common terrestrial coccoid green alga previously assigned to Chlorella (Trebouxiophyceae, Chlorophyta). European Journal of Phycology 45: 7995.CrossRefGoogle Scholar
Doering, M. & Piercey-Normore, M. D. (2009) Genetically divergent algae shape a lichen community on Jack Pine in Manitoba. Lichenologist 41: 6980.Google Scholar
Elborne, S. A. (2008) Lichenomphalia . In Funga Nordica (H. Knudsen & J. Vesterholt, eds): 913. København: Nordsvamp.Google Scholar
Elborne, S. A. (2012) Lichenomphalia . In Funga Nordica (H. Knudsen & J. Vesterholt, eds): 293295. København: Nordsvamp.Google Scholar
Favre, J. (1955) Les champignons supérieurs de la zone alpine du Parc National suisse. Ergebnisse der Wissenschaftlichen Untersuchungen des Schweizerischen Nationalparks 5: 1212.Google Scholar
Geml, J., Timling, I., Robinson, C. H., Lennon, N., Nusbaum, H. C., Brochmann, C., Noordeloos, M. E. & Taylor, D. L. (2012) An arctic community of symbiotic fungi assembled by long-distance dispersers: phylogenetic diversity of ectomycorrhizal basidiomycetes in Svalbard based on soil and sporocarp DNA. Journal of Biogeography 39: 7488.Google Scholar
Grube, M., DePriest, P. T., Gargas, A. & Hafellner, J. (1995) DNA isolation from lichen ascomata. Mycological Research 99: 13211324.Google Scholar
Hall, T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 9598.Google Scholar
Hodkinson, B., Moncada, B. & Lücking, R. (2013) Lepidostromatales ordo novum, a unique, lichenized lineage within Basidiomycota (Agaricomycetes), with the description of two new genera, Ertzia and Sulzbacheromyces, and one new species, Lepidostroma winklerianum . Fungal Diversity 64: 165179.Google Scholar
Horak, E. (1960) Die Pilzvegetation im Gletschervorfeld (2290–2350m) des Rotmoosferners in den Ötztaler Alpen. Nova Hedwigia 2: 487507.Google Scholar
Index Fungorum Partnership (2016) URL www.indexfungorum.org. (Accessed 2 March 2017).Google Scholar
Jørgensen, P. M. & Ryman, S. (1989) The correct names of the lichenized Omphalina species in Scandinavia. Graphis Scripta 3: 138143.Google Scholar
Karsten, P. A. (1889) Symbolae ad mycologiam fennicam, pars XXIX. Meddelanden af Societas pro fauna et flora Fennica 16: 84106.Google Scholar
Katoh, K., Asimenos, G. & Toh, H. (2009) Multiple alignment of DNA sequences with MAFFT. Methods in Molecular Biology 537: 3964.CrossRefGoogle ScholarPubMed
Kuyper, T. W. (1986) Generic delimitation in European omphalinoid Tricholomataceae . Atti del Centro Studi per la Flora Mediterranea (Borgo Val di Taro, Italy) 6: 83104.Google Scholar
Kuyper, T. W. (1995) Genus Phytoconis . In Flora Agaricina Neerlandica Vol. 3 (C. Bas, T. W. Kuyper, M. E. Noordeloos & E. C. Vellinga, eds): 8992. Rotterdam: A. A. Balkema.Google Scholar
Lodge, J. D., Mahajabeen, P., Matheny, P. B., Aime, M. C., Cantrell, S. A., Boertmann, D., Kovalenko, A., Vizzini, A., Dentinger, B. T. M., Kirk, P. M. et al. (2014) Molecular phylogeny, morphology, pigment chemistry and ecology in Hygrophoraceae (Agaricales). Fungal Diversity 64: 199.Google Scholar
Lohtander, K., Oksanen, I. & Rikkinen, J. (2003) Genetic diversity of green algal and cyanobacterial photobionts in Nephroma (Peltigerales). Lichenologist 35: 325339.CrossRefGoogle Scholar
Lumbsch, T. & Schmitt, I. (2001) Molecular data suggest that the lichen genus Pertusaria is not monophyletic. Lichenologist 33: 161170.Google Scholar
Lutzoni, F. M. (1997) Phylogeny of lichen- and non-lichen-forming omphalinoid mushrooms and the utility of testing for combinability among multiple data sets. Systematic Biology 46: 373406.CrossRefGoogle ScholarPubMed
Malavasi, V., Škaloud, P., Rindi, F., Tempesta, S., Paoletti, M. & Pasqualetti, M. (2016) DNA-based taxonomy in ecologically versatile microalgae: a re-evaluation of the species concept within the coccoid green algal genus Coccomyxa (Trebouxiophyceae, Chlorophyta). PLoS ONE 11: e0151137.Google Scholar
Mycology Collections Portal (2016) URL http://mycoportal.org/. (Accessed 2 March 2017).Google Scholar
Neville, P. & Fouchier, F. (2009) Une nouvelle espèce méditerranéenne de Lichenomphalia: L. cinereispinula Neville & Fouchier nov. sp . Bulletin Semestriel de la Fédération des Associations Mycologiques Méditerranéennes 36: 1524.Google Scholar
Oberwinkler, F. (2012) Basidiolichens. In The Mycota. Fungal Associations IX, 2nd edn (B. Hock, ed.): 341362. Berlin: Springer Verlag.Google Scholar
Penn, O., Privman, E., Ashkenazy, H., Landan, G., Graur, D. & Pupko, T. (2010 a) GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Research 38: W23W28.Google Scholar
Penn, O., Privman, E., Landan, G., Graur, D. & Pupko, T. (2010 b) An alignment confidence score capturing robustness to guide tree uncertainty. Molecular Biology and Evolution 27: 17591767.Google Scholar
Poelt, J. & Oberwinkler, F. (1964) Zur Kenntnis der flechtenbildenden Blätterpilze der Gattung. Omphalina. Österreichische Botanische Zeitschrift 111: 398401.Google Scholar
Quélet, L. (1886) Quelques espèces critiques ou nouvelles de la flore mycologique de France. Compte Rendu de l’Association Française pour l’avancement des Sciences 24: 444453.Google Scholar
Redhead, S. A. (1984) Lichenized agarics: taxonomic and nomenclatural riddles. In Abstracts of the Second International Symposium on Arctic and Alpine Mycology, 26 August–2 September, 1984, Fetan, Switzerland, pp. 35–36.Google Scholar
Redhead, S. A. & Kuyper, T. W. (1987) Lichenized agarics: taxonomic and nomenclatural riddles. In Arctic and Alpine Mycology II (G. A. Laursen, J. F. Ammirati & S. A. Redhead, eds): 319348. New York: Plenum Publishing.CrossRefGoogle Scholar
Redhead, S. A. & Kuyper, T. W. (1988) Phytoconis, the correct generic name for the basidiolichen Botrydina . Mycotaxon 31: 221223.Google Scholar
Redhead, S. A., Lutzoni, F. M., Moncalvo, J.-M. & Vilgalys, R. (2002) Phylogeny of agarics: partial systematics solutions for core omphalinoid genera in the Agaricales (Euagarics). Mycotaxon 83: 1957.Google Scholar
Saar, I. & Voitk, A. (2015) Type studies of two Tricholomopsis species described by Peck. Mycological Progress 14: 46.Google Scholar
Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A. & Chen, W., Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America 109: 6241–6246.Google Scholar
Singer, R. (1948) New and interesting species of Basidiomycetes. II. Papers of the Michigan Academy of Science, Arts and Letters 32: 103150.Google Scholar
Singer, R. (1952) The agarics of the Argentine sector of Tierra del Fuego I. Sydowia 6: 165226.Google Scholar
Singer, R. & Clémençon, H. (1972) Notes on some Leucosporous and Rhodosporous European Agarics. Nova Hedwigia 23: 305351.Google Scholar
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 26882690.CrossRefGoogle ScholarPubMed
Sulzbacher, M. A., Wartchow, F., Ovrebo, C. L., Sousa, J. O., Baseia, I. G., Moncada, B. & Lücking, R. (2016) Sulzbacheromyces caatingae: notes on its systematics, morphology and distribution based on ITS barcoding sequences. Lichenologist 48: 6170.Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 27252729.CrossRefGoogle ScholarPubMed
Thiers, B. (2016 continuously updated) Index Herbariorum: A global directory of public herbaria and associated staff, New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/ih/ (Accessed 5 June 2016).Google Scholar
Voitk, A. (2006) Three lichenomphalias from the top of Gros Morne Mountain. Mycophile 47 (5): 111.Google Scholar
Voitk, A. (2017) Multiclavula of NL. Omphalina 8 (1): 36.Google Scholar
Zoller, S. & Lutzoni, F. (2003) Slow algae, fast fungi: exceptionally high nucleotide substitution rate differences between lichenized fungi Omphalina and their symbiotic green algae Coccomyxa . Molecular Phylogenetics and Evolution 29: 629640.Google Scholar