[1]Agashe, A., Lauter, K. and Venkatesan, R., ‘Constructing elliptic curves with a known number of points over a prime field’, High primes and misdemeanours: lectures in honour of the 60th Birthday of Hugh Cowie Williams, Fields Institute Communications 41 (eds van der Poorten, A. J. and Stein, A.; American Mathematical Society, 2004) 1–17.
[2]Agrawal, M., Kayal, N. and Saxena, N., ‘PRIMES is in P’, Ann. Math. (2) 160 (2004) 781–793.
[3]Atkin, A. O. L. and Morain, F., ‘Elliptic curves and primality proving’, Math. Comp. 61 (1993) 29–68.
[4]Bach, E., ‘Analytic methods in the analysis and design of number-theoretic algorithms’, ACM Distinguished Dissertation 1984 (MIT Press, 1985).
[5]Bach, E., ‘Explicit bounds for primality testing and related problems’, Math. Comp. 55 (1990) no. 191, 355–380.
[6]Baier, S. and Zhao, L., ‘On primes in arithmetic progressions’, Int. J. Number Theory 5 (2009) no. 6, 1017–1035.
[7]Belding, J., Bröker, R., Enge, A. and Lauter, K., ‘Computing Hilbert class polynomials’, Algorithmic Number Theory Symposium–ANTS VIII, Lecture Notes in Computer Science 5011 (eds van der Poorten, A. J. and Stein, A.; Springer, 2008) 282–295.
[8]Berlekamp, E. R., ‘Factoring polynomials over large finite fields’, Math. Comp. 24 (1970) no. 111, 713–735.
[9]Bernstein, D. J., ‘Detecting perfect powers in essentially linear time, and other studies in computational number theory’, PhD Thesis, University of California at Berkeley, 1995.
[10]Bernstein, D. J. and Sorenson, J. P., ‘Modular exponentiation via the explicit Chinese Remainder theorem’, Math. Comp. 76 (2007) 443–454.
[11]Bisson, G. and Sutherland, A. V., ‘Computing the endomorphism ring of an ordinary elliptic curve over a finite field’, J. Number Theory 113 (2011) 815–831.
[12]Bröker, R., ‘A p-adic algorithm to compute the Hilbert class polynomial’, Math. Comp. 77 (2008) 2417–2435.
[13]Bröker, R., Lauter, K. and Sutherland, A. V., ‘Modular polynomials via isogeny volcanoes’, Math. Comp. 81 (2012) 1201–1231.
[14]Buchmann, J. and Vollmer, U., Binary quadratic forms: an algorithmic approach, Algorithms and Computations in Mathematics 20 (Springer, Berlin, 2007).
[15]Chao, J., Nakamura, O., Sobataka, K. and Tsujii, S., ‘Construction of secure elliptic cryptosystems using CM tests and liftings’, Advances in cryptology–ASIACRYPT’98, Lecture Notes in Computer Science 1514 (Springer, 1998) 95–109.
[16]Childs, A. M., Jao, D. and Soukharev, V., Constructing elliptic curve isogenies in quantum subexponential time, Preprint, 2011, http://arxiv.org/abs/1012.4019v2. [17]Cohen, H. and Lenstra, H. W. Jr., ‘Heuristics on class groups of number fields’, Number Theory, Noordwijkerhout 1983, Lecture Notes in Mathematics 1068 (Springer, 1984) 33–62.
[18]Couveignes, J.-M. and Henocq, T., ‘Action of modular correspondences around CM points’, Algorithmic Number Theory Symposium–ANTS V, Lecture Notes in Computer Science 2369 (eds Fieker, C. and Kohel, D. R.; Springer, 2002) 234–243.
[19]Cox, D. A., Primes of the form x 2+ny 2: Fermat, class field theory, and complex multiplication (John Wiley and Sons, 1989).
[20]Crandall, R. and Pomerance, C., Prime numbers: a computational perspective, 2nd edn (Springer, 2005).
[21]Enge, A., ‘The complexity of class polynomial computation via floating point approximations’, Math. Comp. 78 (2009) 1089–1107.
[22]Enge, A. and Morain, F., ‘Comparing invariants for class fields of imaginary quadratic fields’, Algorithmic Number Theory Symposium–ANTS V, Lecture Notes in Computer Science 2369 (eds Fieker, C. and Kohel, D. R.; Springer, 2002) 252–266.
[23]Enge, A. and Morain, F., ‘Fast decomposition of polynomials with known Galois group’, Applied algebra, algebraic algorithms, and error correcting codes — 2003, Lecture Notes in Computer Science 2643 (Springer, 2003) 254–264.
[24]Enge, A. and Sutherland, A. V., ‘Class invariants for the CRT method’, Algorithmic Number Theory Symposium–ANTS IX, Lecture Notes in Computer Science 6197 (eds Hanrot, G., Morain, F. and Thomé, E.; Springer, 2010) 142–156.
[25] Free software foundation, ‘GNU compiler collection’, version 4.4.3, 2010, available at http://gcc.gnu.org/. [26]Gee, A. and Stevenhagen, P., ‘Generating class fields with Shimura reciprocity’, Algorithmic Number Theory Symposium–ANTS III, Lecture Notes in Computer Science 1423 (Springer, 1998) 442–453.
[27]Granlund, T.et al., GNU multiple precision arithmetic library, September 2010, version 5.0.1, available at http://gmplib.org/. [28]Hanrot, G. and Morain, F., ‘Solvability by radicals from an algorithmic point of view’, International Conference on Symbolic and Algebraic Computation–ISSAC 2001 (ACM, 2001) 175–182.
[29]Hardy, G. H. and Wright, E. M., An introduction to the theory of numbers, 5th edn (Oxford Science Publications, 1979).
[31]Harvey, D., ‘A cache-friendly truncated FFT’, Theoret. Comput. Sci. 410 (2009) 2649–2658.
[32]Ionica, S. and Joux, A., ‘Pairing the volcano’, Algorithmic Number Theory Symposium–ANTS IX, Lecture Notes in Computer Science 6197 (eds Hanrot, G., Morain, F. and Thomé, E.; Springer, 2010) 201–218.
[33]Lagarias, J. C. and Odlyzko, A. M., ‘Effective versions of the Chebotarev density theorem’, Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) (Academic Press, 1977) 409–464.
[34]Lang, S., Elliptic functions, 2nd edn (Springer, 1987).
[35]Littlewood, J. E., ‘On the class-number of the corpus
’, Proc. Lond. Math. Soc. 27 (1928) 358–372. [36]Morain, F., ‘Primality proving using elliptic curves: an update’, Algorithmic Number Theory Symposium–ANTS III, Lecture Notes in Computer Science 1423 (Springer, 1998) 111–127.
[37]Rubin, K. and Silverberg, A., ‘Choosing the correct elliptic curve in the CM method’, Math. Comp. 79 (2010) 545–561.
[38]Schönhage, A., ‘Fast reduction and composition of binary quadratic forms’, International Symposium on Symbolic and Algebraic Computation–ISSAC’91 (ed. Watt, S. M.; ACM, 1991) 128–133.
[39]Schönhage, A. and Strassen, V., ‘Schnelle Multiplikation großer zahlen’, Computing 7 (1971) 281–292.
[40]Serre, J.-P., ‘Complex multiplication’, Algebraic number theory (eds Cassels, J.W.S. and Fröhlich, A.; Academic Press, 1967).
[42]Sutherland, A. V., ‘Computing Hilbert class polynomials with the Chinese remainder theorem’, Math. Computation 80 (2011) 501–538.
[43]Sutherland, A. V., ‘Structure computation and discrete logarithms in finite abelian p-groups’, Math. Comp. 80 (2011) 477–500.
[44]Leendert, B. and Waerden, van der, Algebra, vol. I (Springer, 1991). Originally published in German as Moderne algebra in 1930–1931.
[45]von zur Gathen, J. and Gerhard, J., Modern computer algebra, 2nd edn (Cambridge University Press, 2003).
[46]Weber, H., Lehrbuch der algebra, 3rd edn, vol. III (Chelsea, 1961).