Skip to main content
×
×
Home

Computing level one Hecke eigensystems (mod  $p$ )

  • Craig Citro (a1) and Alexandru Ghitza (a2)
Abstract

We describe an algorithm for enumerating the set of level one systems of Hecke eigenvalues arising from modular forms (mod  $p$ ).

Supplementary materials are available with this article.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Computing level one Hecke eigensystems (mod  $p$ )
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Computing level one Hecke eigensystems (mod  $p$ )
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Computing level one Hecke eigensystems (mod  $p$ )
      Available formats
      ×
Copyright
References
Hide All
1. Ash, A. and Stevens, G., ‘Cohomology of arithmetic groups and congruences between systems of Hecke eigenvalues’, J. reine angew. Math. 365 (1986) 192220.
2. Carlitz, L., ‘The class number of an imaginary quadratic field’, Comment. Math. Helv. 27 (1953) 338345.
3. Centeleghe, T. G., ‘A conjectural mass formula for mod Galois representations’. PhD Thesis, University of Utah, May 2009.
4. Centeleghe, T. G., ‘Computing the number of certain Galois representations mod ’, J. Théor. Nombres Bordeaux 23 (2011) no. 3, 603627.
5. Couveignes, J-M. and Edixhoven (eds), B., Computational aspects of modular forms and Galois representations (Princeton University Press, Princeton, NJ, 2011).
6. Edixhoven, B., ‘The weight in Serre’s conjectures on modular forms’, Invent. Math. 109 (1992) no. 3, 563594.
7. Gouvêa, F. Q., ‘Non-ordinary primes: a story’, Experiment. Math. 6 (1997) no. 3, 195205.
8. Gross, B. H., ‘A tameness criterion for Galois representations associated to modular forms (mod )’, Duke Math. J. 61 (1990) no. 2, 445517.
9. Hart, W., ‘Fast library for number theory: an introduction’, Mathematical Software – ICMS 2010, Lecture Notes in Computer Science 6327 (Springer, Heidelberg, 2010) 8891, http://www.flintlib.org/.
10. Jochnowitz, N., ‘Congruences between systems of eigenvalues of modular forms’, Trans. Amer. Math. Soc. 270 (1982) no. 1, 269285.
11. Jochnowitz, N., ‘A study of the local components of the Hecke algebra mod ’, Trans. Amer. Math. Soc. 270 (1982) no. 1, 253267.
12. Katz, N. M., ‘ -adic properties of modular schemes and modular forms’, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Mathematics 350 (Springer, Berlin, 1973) 69190.
13. Katz, N. M., ‘A result on modular forms in characteristic ’, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), Lecture Notes in Mathematics 601 (Springer, Berlin, 1977) 5361.
14. Khare, C., ‘Modularity of Galois representations and motives with good reduction properties’, J. Ramanujan Math. Soc. 22 (2007) no. 1, 75100.
15. Ram Murty, M., ‘Congruences between modular forms’, Analytic number theory (Kyoto, 1996), London Mathematical Society Lecture Note Series 247 (Cambridge University Press, Cambridge, 1997) 309320.
16. Serre, J-P., ‘Corps locaux’. Hermann, Paris, 1968. Deuxième édition, Publications de l’Université de Nancago, No. VIII.
17. Serre, J-P., ‘Propriétés galoisiennes des points d’ordre fini des courbes elliptiques’, Invent. Math. 15 (1972) no. 4, 259331.
18. Serre, J-P., ‘Congruences et formes modulaires [d’après H. P. F. Swinnerton-Dyer]’, Séminaire Bourbaki, 24e année (1971/1972), Exp. No. 416, Lecture Notes in Mathematics 317 (Springer, Berlin, 1973) 319338.
19. Serre, J-P., ‘Modular forms of weight one and Galois representations’, Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) (Academic Press, London, 1977) 193268.
20. Stein, W. A. et al. , Sage Mathematics Software (Version 4.6.1). The Sage Development Team, 2011, http://www.sagemath.org.
21. Swinnerton-Dyer, H. P. F., ‘On -adic representations and congruences for coefficients of modular forms’, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), Lecture Notes in Mathematics 350 (Springer, Berlin, 1973) 155.
22. Zagier, D., ‘Elliptic modular forms and their applications’, The 1-2-3 of modular forms, Universitext (Springer, Berlin, 2008) 1103.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

LMS Journal of Computation and Mathematics
  • ISSN: -
  • EISSN: 1461-1570
  • URL: /core/journals/lms-journal-of-computation-and-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Type Description Title
UNKNOWN
Supplementary materials

Citro Supplementary Material
Supplementary Material

 Unknown (113 KB)
113 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed