[1]
Abbott, T., Kedlaya, K. and Roe, D., ‘Bounding Picard numbers of surfaces using p-adic cohomology’, Arithmetic, geometry and coding theory (AGCT 2005), Séminaires et Congrès 21 (Société Mathématique de France, 2009) 125–159.
[2]
Adolphson, A. and Sperber, S., ‘Exponential sums and Newton polyhedra: cohomology and estimates’, Ann. of Math. (2)
130 (1989) 367–406.
[3]
Adolphson, A. and Sperber, S., ‘p-adic estimates for exponential sums’,
p-adic analysis (Trento, 1989), Lecture Notes in Mathematics 1454 (Springer, Berlin, 1990) 11–22.
[4]
Adolphson, A. and Sperber, S., ‘Exponential sums nondegenerate relative to a lattice’, Algebra Number Theory
3 (2009) 881–906.
[5]
Batyrev, V. and Cox, D., ‘On the Hodge structure of projective hypersurfaces in toric varieties’, Duke Math. J.
75 (1994) 293–338.
[6]
Bates (IMA), D. J., Bihan, F. and Sottile, F., ‘Bounds on the number of real solutions to polynomial equations’, Preprint, 2007, arXiv:math.AG/0706.4134.
[7]
Bostan, A., Gaudry, P. and Schost, E., ‘Linear recurrences with polynomial coefficients and application to integer factorization and Cartier–Manin operator’, SIAM J. Comput.
36 (2007) 1777–1806.
[8]
Bruns, W. and Koch, R., ‘Computing the integral closure of an affine semigroup’, Univ. Iagel. Acta Math.
39 (2001) 59–70.
[9]
Castryck, W., ‘Point counting on nondegenerate curves’, PhD Thesis, Katholieke Universiteit, Leuven, 2006.
[10]
Castryck, W., Denef, J. and Vercauteren, F., ‘Computing zeta functions of nondegenerate curves’, Int. Math. Res. Pap. IMRP 2006 (2006) 72017.
[11]
Castryck, W. and Voight, J., ‘On nondegeneracy of curves’, Algebra Number Theory
3 (2009) 255–281.
[12]
Chazelle, B., ‘An optimal convex hull algorithm in any fixed dimension’, Discrete Comput. Geom.
10 (1993) 377–409.
[13]
Delsarte, J., ‘Nombre de solutions des équations polynomiales sur un corps fini’, Séminaire Bourbaki, vol. 1, Exp. No. 39 (1948–1951) (Société Mathématique de France, Paris, 1995) 321–329.
[14]
Denef, J. and Loeser, F., ‘Weights of exponential sums, intersection cohomology, and Newton polyhedra’, Invent. Math.
106 (1991) 275–294.
[15]
Domich, P. D., Kannan, R. and Trotter, L. E. Jr., ‘Hermite Normal Form computation using modulo determinant arithmetic’, Math. Oper. Res.
12 (1987) 50–59.
[16]
Dwork, B., ‘On the rationality of the zeta function of an algebraic variety’, Amer. J. Math.
82 (1960) 631–648.
[17]
Dwork, B., ‘On the zeta function of a hypersurface’, Publ. Math. Inst. Hautes Études Sci.
12 (1962) 5–68.
[18]
Dwork, B., ‘A deformation theory for the zeta function of a hypersurface’, Proceedings of the International Congress of Mathematicians, Stockholm, 1962 (Institut Mittag-Leffler, Djursholm, Sweden, 1963) 247–259.
[19]
Dwork, B., ‘On p-adic analysis’, Some recent advances in the basic sciences, vol. 2, Proc. Annual Sci. Conf., New York, 1965–1966 (Belfer Graduate School of Science, Yeshiva University, New York, 1969) 129–154.
[20]
Dwork, B., ‘
p-adic cycles’, Publ. Math. Inst. Hautes Études Sci.
37 (1969) 27–115.
[21]
Edixhoven, B., Point counting after Kedlaya, lecture notes, EIDMA-Stieltjes graduate course, Leiden, 2003.
[22]
Edixhoven, B., Couveignes, J.-M., de Jong, R., Merkl, F. and Bosman, J., ‘Computational aspects of modular forms and Galois representations’, Preprint, 2010, arXiv:math.NT/0605244.
[23]
Fortune, S., ‘Voronoi diagrams and Delaunay triangulations’, Computing in Euclidean geomtry (eds Du, D.-Z. and Hwang, F. K.; World Scientific, 1995) 193–233.
[24]
Fortune, S., ‘Voronoi diagrams and Delaunay triangulations’, Handbook of discrete and computational geometry (eds Goodman, J. E. and O’Rourke, J.; CRC Press, Boca Raton, 1997) 377–388.
[25]
Gerkmann, R., ’Relative rigid cohomology and deformation of hypersurfaces’, Int. Math. Res. Pap. IMRP 2007 (2007) rpm003.
[26]
Gritzmann, P., Klee, V. and Larman, D. G., ‘Largest j-simplices n-polytopes’, Discrete Comput. Geom.
13 (1995) 477–515.
[27]
Harvey, D., ‘Kedlaya’s algorithm in larger characteristic’, Int. Math. Res. Not. IMRN 2007 (2007) rnm095.
[28]
Harvey, D., ‘Computing zeta functions of projective surfaces in large characteristic’, Preprint.
[30]
Kadir, S., ‘The arithmetic of Calabi–Yau manifolds and mirror symmetry’, PhD Thesis, University of Oxford, Oxford, 2004.
[31]
Kannan, R. and Bachem, A., ‘Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix’, SIAM J. Comput.
8 (1979) 499–507.
[32]
Katz, N. M., ‘On the differential equations satisfied by period matrices’, Publ. Math. Inst. Hautes Études Sci.
35 (1968) 71–106.
[33]
Katz, N. M. and Sarnak, P., Random matrices, Frobenius eigenvalues, and monodromy (American Mathematical Society, Providence, RI, 1998).
[34]
Kedlaya, K., ‘Counting points on hyperelliptic curves using Monsky–Washnitzer cohomology’, J. Ramanujan Math. Soc.
16 (2001) 323–338.
[35]
Kedlaya, K., ‘Search techniques for root-unitary polynomials’, Computational arithmetic geometry, Contemporary Mathematics 463 (American Mathematical Society, Providence, RI, 2008) 71–81.
[36]
Kedlaya, K., ‘Computing zeta functions of nondegenerate toric hypersurfaces: two proposals’, Preprint.
[37]
Khovanskii, A. G., ‘Newton polyhedra and toroidal varieties’, Funct. Anal. Appl.
11 (1977) 289–296.
[38]
Koblitz, N.,
p-adic numbers, p-adic analysis, and zeta-functions, Graduate Texts in Mathematics 58 (Springer, 1977).
[39]
Koblitz, N., ‘The number of points on certain families of hypersurfaces over finite fields’, Compositio Math.
48 (1983) 3–23.
[40]
Kouchnirenko, A. G., ‘Polyèdres de Newton et nombres de Milnor’, Inv. Math.
32 (1976) 1–31.
[41]
Kouchnirenko, A. G., Fewnomials, Translations of Mathematical Monographs 88 (American Mathematical Society, Providence, RI, 1991).
[42]
Lagarias, J. and Ziegler, G., ‘Bound for lattice polytopes containing a fixed number of interior points in a sublattice’, Canad. J. Math.
43 (1991) 1022–1035.
[43]
Lauder, A. G. B., ‘Deformation theory and the computation of zeta functions’, Proc. Lond. Math. Soc. (3)
88 (2004) 565–602.
[44]
Lauder, A. G. B., ‘Counting solutions to equations in many variables over finite fields’, Found. Comput. Math.
4 (2004) 221–267.
[45]
Lauder, A. G. B., ‘A recursive method for computing zeta functions of varieties’, LMS J. Comput. Math.
9 (2006) 222–269.
[46]
Lauder, A. G. B. and Wan, D., ‘Computing zeta functions of Artin–Schreier curves over finite fields’, LMS J. Comput. Math.
5 (2002) 34–55.
[47]
Lauder, A. G. B. and Wan, D., ‘Computing zeta functions of Artin–Schreier curves over finite fields. II’, J. Complexity
20 (2004) 331–349.
[48]
Lauder, A. G. B. and Wan, D., ‘Counting points on varieties over finite fields of small characteristic’, Algorithmic number theory: lattices, number fields, curves and cryptography, Mathematical Sciences Research Institute Publications 44 (Cambridge University Press, Cambridge, 2008) 579–612.
[49]
de Loera, J., Hemmecke, R. and Köppe, M., ‘Pareto optima of multicriteria integer programs’, INFORMS J. Comput.
21 (2009) 39–48.
[50]
Mavlyutov, A. R., ‘Cohomology of complete intersections in toric varieties’, Pacific J. Math.
191 (1999) 133–144.
[52]
Preparata, F. P. and Shamos, M. I., Computational geometry: an introduction, 3rd edn (Springer, 1991).
[53]
Savitt, D., Thakur, D., Baker, M., Conrad, B., Dasgupta, S., Kedlaya, K. and Teitelbaum, J.,
p-adic geometry: lectures from the 2007 Arizona winter school, University Lecture Series 45 (American Mathematical Society, Providence, RI, 2008).
[54]
Schoof, R., ‘Elliptic curves over finite fields and the computation of square roots mod p
’, Math. Comp.
44 (1985) 483–494.
[55]
Seidel, R., ‘Convex hull computations’, Handbook of discrete and computational geometry (eds Goodman, J. E. and O’Rourke, J.; CRC Press, Boca Raton, FL, 1997) 361–375.
[56]
Serre, J.-P., ‘Zeta and L-functions’, Arithmetic algebraic geometry (ed. Schilling, ; Harper and Row, New York, NY, 1965).
[57]
Tuitman, J., ‘Counting points in families of nondegenerate curves’, PhD Thesis, Katholieke Universiteit, Leuven, 2010.
[58]
Wan, D., ‘Computing zeta functions over finite fields’, Contemp. Math.
225 (1999) 131–141.
[59]
Wan, D., ‘Modular counting of rational points over finite fields’, Found. Comput. Math.
8 (2008) 597–605.
[60]
Wan, D., ‘Algorithmic theory of zeta functions over finite fields’, Algorithmic number theory: lattices, number fields, curves and cryptography, Mathematical Sciences Research Institute Publications 44 (Cambridge University Press, Cambridge, 2008) 551–578.
[61]
Weil, A., ‘Numbers of solutions of equations in finite fields’, Bull. Amer. Math. Soc.
55 (1949) 497–508.
[62]
Widmer, M., ‘Lipschitz class, narrow class, and counting lattice points’, Proc. Amer. Math. Soc., to appear.
[63]
Wong, C. F., ‘Zeta functions of projective toric hypersurfaces over finite fields’, PhD thesis, University of California, Irvine, 2008.