Skip to main content Accesibility Help
×
×
Home

A Database for Field Extensions of the Rationals

  • Jürgen Klüners (a1) and Gunter Malle (a2)
Abstract

This paper announces the creation of a database for number fields. It describes the contents and the methods of access, indicates the origin of the polynomials, and formulates the aims of this collection of fields.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A Database for Field Extensions of the Rationals
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A Database for Field Extensions of the Rationals
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A Database for Field Extensions of the Rationals
      Available formats
      ×
Copyright
References
Hide All
1.Acciaro, V. and Klüners, J., ‘Computing local Artin maps, and solvability of norm equations’, J. Symb. Comput. 30 (2000) 239252.
2.Beckmann, S., ‘IS every extension of ℚ the specialization of a branched covering?’, J. Algebra 164 (1994) 430451.
3.Belabas, K., ‘A fast algorithm to compute cubic fields’, Math. Comput. 66 (1997) 12131237.
4.Berge, A., Martinet, J. and Olivier, M., ‘The computation of sextic fields with a quadratic subfield’, Math. Comput. 54 (1990) 869884.
5.Böge, S., ‘Witt-Invariante und ein gewisses Einbettungsproblem’, J. Reine Angew. Math. 410 (1990) 153159.
6.Buchmann, J., Ford, D. and Pohst, M., ‘Enumeration of quartic fields of small discriminant’, Math. Comput. 61 (1993) 873879.
7.Cohen, H., A course in computational algebraic number theory (Springer, Berlin, 1993).
8.Cohen, H., Advanced topics in computational number theory (Springer, Berlin, 2000).
9.Cohen, H., Diaz, F. Diaz Y and Olivier, M., ‘Tables of octic fields with a quartic subfield’, Math. Comput. 68 (1999) 17011716.
10.Daberkow, M., Fieker, C., Klüners, J., Pohst, M., Roegner, K., Schörnig, M. and Wildanger, K., ‘KANT V4’, J. Symb. Comput. 24 (1997) 267283.
11.Diaz, F. Diaz Y, ‘Valeurs minima du discriminant pour certains types de corps de degré 7’, Ann. Inst. Fourier 34 (1984) 2938.
12.Diaz, F. Diaz Y, ‘Petits discriminants des corps de nombres totalement imaginaires de degré 8’. J. Number Theory 25 (1987) 3452.
13.Diaz, F. Diaz Y, ‘Discriminant minimal et petits discriminants des corps de nombres de degré 7 avec cinq places réelles’, J. London Math. Soc. (2) 38 (1988) 3346.
14.Diaz, F. Diaz Y and Olivier, M., ‘Imprimitive ninth-degree number fields with small discriminants’, Math. Comput. 64, microfiche suppl. (1995) 305321.
15.Fieker, C., ‘Computing class fields via the Artin map’, Math. Comput. 70 (2001) 12931303.
16.Fieker, C. and Klüners, J., ‘Minimal discriminants for fields with Frobenius groups as Galois groups', IWR-Preprint 2001-33, Universität Heidelberg, 2001.
17.Ford, D. and Pohst, M., ‘The totally real A5 extension of degree 6 with minimum discriminant’, Exp. Math. 1 (1992) 231235.
18.Ford, D. and Pohst, M., ‘The totally real A6 extension of degree 6 with minimum discriminant’, Exp. Math. 2 (1993) 231232.
19.Ford, D., Pohst, M., Daberkow, M. and H. Nasser, ‘The S5 extensions of degree 6 with minimum discriminant’, Exp. Math. 7 (1998) 121124.
20.Haran, D. and Jarden, M., ‘The absolute Galois group of a pseudo real closed field’, Ann. Sc. Norm. Super. Pisa 12 (1985) 449489.
21.Klüners, J. and Malle, G., ‘Explicit Galois realization of transitive groups of degree up to 15’, J. Symb. Comput. 30 (2000) 675716.
22.Koch, H., Number theory-algebraic numbers and functions (Amer. Math. Soc, Providence, RI, 2000).
23.Malle, G., ‘Multi-parameter polynomials with given Galois group’, J. Symb. Comput. 30(2000) 717731.
24.Malle, G. and Matzat, B. H., Inverse Galois theory (Springer, Berlin, 1999).
25.Narkiewicz, W., Elementary and analytic theory of algebraic numbers (Springer, Berlin, 1989).
26.Olivier, M., ‘Corps sextiques primitifs. IV’, Semin. Theor. Nombres Bordx. (II) 3 (1991) 381404.
27.Olivier, M., ‘The computation of sextic fields with a cubic subfield and no quadratic subfield’, Math. Comput. 58 (1992) 419432.
28.Pohst, M., Martinet, J. and Diaz, F. Diaz Y, ‘The minimum discriminant of totally real octic fields’, J. Number Theory 36 (1990) 145159.
29.Pohst, M., ‘The minimum discriminant of seventh degree totally real algebraic number fields’, Number theory and algebra (Academic Press, New York, 1977) 235240.
30.Pohst, M., ‘On the computation of number fields of small discriminants including the minimum discriminants of sixth degree fields’, J. Number Theory 14 (1982) 99117.
31.Schwarz, A., Pohst, M. and Diaz, F. Diaz Y, ‘A table of quintic number fields’, Math. Comput. 63 (1994) 361376.
32.Serre, J.-P., Topics in Galois theory (Jones and Bartlett, Boston, 1992).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

LMS Journal of Computation and Mathematics
  • ISSN: -
  • EISSN: 1461-1570
  • URL: /core/journals/lms-journal-of-computation-and-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax
Type Description Title
UNKNOWN
Supplementary materials

Kluners and Malle Appendix
Appendix

 Unknown (4.2 MB)
4.2 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed