Skip to main content Accessibility help
×
×
Home

Explicit application of Waldspurger’s theorem

  • Soma Purkait (a1)

Abstract

For a given cusp form $\phi $ of even integral weight satisfying certain hypotheses, Waldspurger’s theorem relates the critical value of the $\mathrm{L} $ -function of the $n\mathrm{th} $ quadratic twist of $\phi $ to the $n\mathrm{th} $ coefficient of a certain modular form of half-integral weight. Waldspurger’s recipes for these modular forms of half-integral weight are far from being explicit. In particular, they are expressed in the language of automorphic representations and Hecke characters. We translate these recipes into congruence conditions involving easily computable values of Dirichlet characters. We illustrate the practicality of our ‘simplified Waldspurger’ by giving several examples.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Explicit application of Waldspurger’s theorem
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Explicit application of Waldspurger’s theorem
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Explicit application of Waldspurger’s theorem
      Available formats
      ×

Copyright

References

Hide All
1. Atkin, A. O. L. and Li, W., ‘Twists of newforms and pseudo-eigenvalues of $W$ -operators’, Invent. Math. 48 (1978) 221243.
2. Baruch, E. and Mao, Z., ‘Central value of automorphic L-functions’, Geom. Funct. Anal. 17 (2007) 333384.
3. Basmaji, J., ‘Ein Algorithmus zur Berechnung von Hecke-Operatoren und Anwendungen auf modulare Kurven’, PhD Dissertation, Universität Gesamthochschule Essen, März, 1996.
4. Böcherer, S. and Schulze-Pillot, R., ‘Vector valued theta series and Waldspurger’s theorem’, Abh. Math. Semin. Univ. Hambg. 64 (1994) 211233.
5. Bosma, W., Cannon, J. and Playoust, C., ‘The magma algebra system I: the user language’, J. Symbolic Comput. 24 (1997) 235265; see also http://magma.maths.usyd.edu.au/magma/.
6. Bump, D., Automorphic forms and representations, Cambridge Studies in Advanced Mathematics 55 (Cambridge University Press, 1996).
7. Bungert, M., ‘Construction of a cuspform of weight 3/2’, Arch. Math. 60 (1993) 530534.
8. Cohn, H., A classical invitation to algebraic numbers and class fields (Springer, 1980).
9. Connell, I., ‘Calculating root numbers of elliptic curves over $ \mathbb{Q} $ ’, Manuscripta Math. 82 (1994) 93104.
10. Dickson, L. E., Studies in the theory of numbers (The University of Chicago Press, Chicago, IL, 1930).
11. Flicker, Y., ‘Automorphic forms on covering groups of GL(2)’, Invent. Math. 57 (1980) 119182.
12. Hamieh, A., ‘Ternary quadratic forms and half-integral weight modular forms’, LMS J. Comput. Math. 15 (2012) 418435.
13. Katz, N., ‘Galois properties of torsion points on Abelian varieties’, Invent. Math. 62 (1981) 481502.
14. Koblitz, N., Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics 97 (Springer, 1993).
15. Kohnen, W., ‘Newforms of half-integral weight’, J. reine angew. Math. 333 (1982) 3272.
16. Larry Lehman, J., ‘Levels of positive definite ternary quadratic forms’, Math. Comp. 58 (1992) 399417.
17. Mao, Z., ‘A generalized Shimura correspondence for newforms’, J. Number Theory 128 (2008) 7195.
18. Purkait, S., ‘On Shimura’s decomposition’, Int. J. Number Theory, to appear, doi:10.1142/S179304211350036X.
19. Siegel, C. L., Über die analytische Theorie der quadratischen Formen, Gesammelte Abhandlungen 1 (Springer, Berlin, 1966) 326405.
20. Serre, J. P., A course in arithmetic, Graduate Texts in Mathematics 7 (Springer, 1973).
21. Shimura, G., ‘On Modular forms of half integral weight’, Ann. of Math. (2) 97 (1973) 440481.
22. Shimura, G., ‘The critical values of certain zeta functions associated with modular forms of half-integral weight’, J. Math. Soc. Japan 33 (1981) 649672.
23. Silverman, J. H., The arithmetic of elliptic curves, Graduate Texts in Mathematics 106 (Springer, 1986).
24. Silverman, J. H., Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics 151 (Springer, 1994).
25. Sturm, J., ‘On the congruence of modular forms’, Number theory (New York, 1984–1985), Lecture Notes in Mathematics 1240 (Springer, Berlin, 1987) 275280.
26. Tate, J., ‘Fourier analysis in number fields and Hecke’s zeta-functions’, Algebraic number theory, (eds Cassels, J. W. S. and Fröhlich, A.; Academic Press, 1967) 305347.
27. Tate, J., ‘Number theoretic background’, Automorphic forms, representations, and L-functions, Proc. Sympos. Pure Math. XXXIII 2 (1979) 326.
28. Tunnell, J. B., ‘A classical Diophantine problem and modular forms of weight 3/2’, Invent. Math. 72 (1983) 323334.
29. Vigneras, M. F., ‘Valeur au centre de symétrie des functions L associées aux formes modulaires’, Séminaire de Théorie de Nombres, Paris, 1979–1980, Progress in Mathematics 12 (Birkhäuser, Boston, MA, 1981) 331356.
30. Waldspurger, J. L., ‘Sur les coefficients de Fourier des formes modulaires de poids demi-entier’, J. Math. Pures Appl. 60 (1981) 375484.
31. Yoshida, S., ‘Some variants of the congruent number probelm II’, Kyushu J. Math. 56 (2002) 147165.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

LMS Journal of Computation and Mathematics
  • ISSN: -
  • EISSN: 1461-1570
  • URL: /core/journals/lms-journal-of-computation-and-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed