Skip to main content Accessibility help
×
Home
Hostname: page-component-5959bf8d4d-9w8k4 Total loading time: 1.083 Render date: 2022-12-09T13:33:24.145Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

On level one cuspidal Bianchi modular forms

Published online by Cambridge University Press:  01 August 2013

Alexander D. Rahm
Affiliation:
Department of Mathematics,National University of Ireland at Galway, Ireland email Alexander.Rahm@nuigalway.ie
Mehmet Haluk Şengün
Affiliation:
Mathematics Institute, University of Warwick,Coventry CV4 7AL, United Kingdom email M.H.Sengun@warwick.ac.uk

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we present the outcome of vast computer calculations, locating several of the very rare instances of level one cuspidal Bianchi modular forms that are not lifts of elliptic modular forms.

Type
Research Article
Copyright
© The Author(s) 2013 

References

Aranés, M. T., ‘Modular symbols over number fields’, PhD Thesis, University of Warwick, 2010.Google Scholar
Ash, A. and Pollack, D., ‘Everywhere unramified automorphic cohomology for $\mathrm{SL} \_ 3( \mathbb{Z} )$ ’, Int. J. Number Theory 4 (2008) no. 4, 663675.CrossRefGoogle Scholar
Ash, A. and Stevens, G, ‘Cohomology of arithmetic groups and congruences between systems of Hecke eigenvalues’, J. Reine Angew. Math. 365 (1986) 192220.Google Scholar
Berger, T., ‘Denominators of Eisenstein cohomology classes for $\mathrm{GL} \_ 2$ over imaginary quadratic fields’, Manuscripta Math. 125 (2008) no. 4, 427470.CrossRefGoogle Scholar
Bianchi, L., ‘Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici immaginarî’, Math. Ann. 40 (1892) no. 3, 332412.CrossRefGoogle Scholar
Brown, K. S., Cohomology of groups, Graduate Texts in Mathematics 87 (Springer, Berlin, 1982).CrossRefGoogle Scholar
Bygott, J., ‘Modular forms and modular symbols over imaginary quadratic fields’, PhD Thesis, University of Exeter, 1998.Google Scholar
Calegari, F. and Mazur, B, ‘Nearly ordinary Galois deformations over arbitrary number fields’, J. Inst. Math. Jussieu 8 (2009) no. 1, 99177.CrossRefGoogle Scholar
Cremona, J. E., ‘Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields’, Compositio Math. 51 (1984) no. 3, 275324.Google Scholar
Cremona, J. E., ‘Abelian varieties with extra twist, cusp forms, and elliptic curves over imaginary quadratic fields’, J. Lond. Math. Soc. (2) 45 (1992) no. 3, 404416.CrossRefGoogle Scholar
Cremona, J. E. and Lingham, M. P., ‘Finding all elliptic curves with good reduction outside a given set of primes’, Exp. Math. 16 (2007) no. 3, 303312.CrossRefGoogle Scholar
Doi, K., Hida, H. and Ishii, H., ‘Discriminant of Hecke fields and twisted adjoint $L$ -values for $\mathrm{GL} (2)$ ’, Invent. Math. 134 (1998) no. 3, 547577.CrossRefGoogle Scholar
Elstrodt, J., Grunewald, F. and Mennicke, J., ‘On the group ${\mathrm{PSL} }_{2} ( \mathbb{Z} [i] )$ ’, Number theory days, Exeter, 1980, London Mathematical Society Lecture Note Series 56 (Cambridge University Press, Cambridge, 1982) 255283.Google Scholar
Finis, T., Grunewald, F. and Tirao, P., ‘The cohomology of lattices in $\mathrm{SL} (2, \mathbb{C} )$ ’, Exp. Math. 19 (2010) no. 1, 2963.CrossRefGoogle Scholar
Flöge, D., ‘Zur Struktur der ${\mathrm{PSL} }_{2} $ über einigen imaginär-quadratischen Zahlringen’, Dissertation, Johann-Wolfgang-Goethe-Universität, Fachbereich Mathematik, 1980.Google Scholar
Flöge, D., ‘Zur Struktur der ${\mathrm{PSL} }_{2} $ über einigen imaginär-quadratischen Zahlringen’, Math. Z. 183 (1983) no. 2, 255279.CrossRefGoogle Scholar
Harder, G., ‘On the cohomology of discrete arithmetically defined groups’, Discrete subgroups of Lie groups and applications to moduli, Internat. Colloq., Bombay, 1973 (Oxford University Press, Oxford, 1975) 129160.Google Scholar
Humbert, G., ‘Sur la réduction des formes d’Hermite dans un corps quadratique imaginaire’, C. R. Acad. Sci. Paris 16 (1915) 189196.Google Scholar
Krämer, N., ‘Beiträge zur Arithmetik imaginärquadratischer Zahlkörper’, PhD Thesis, Math.-Naturwiss. Fakultät der Rheinischen Friedrich–Wilhelms-Universität Bonn; Bonn. Math. Schr., 1984.Google Scholar
Lingham, M., ‘Modular forms and elliptic curves over imaginary quadratic fields’, PhD Thesis, University of Nottingham, 2005.Google Scholar
Page, A., ‘Computing arithmetic Kleinian groups’, Preprint, 2012, arXiv:1206.0087 [math.NT].Google Scholar
Poincaré, H., ‘Mémoire sur les groupes Kleinéens’, Acta Math. 3 (1883) no. 1, 4992.CrossRefGoogle Scholar
Rahm, A. D., Bianchi.gp, Open source program (GNU general public license), validated by the CNRS, www.projet-plume.org/fiche/bianchigp part of the GP scripts library of Pari/GP Development Center, 2010.Google Scholar
Rahm, A. D., ‘Homology and $K$ -theory of the Bianchi groups’, C. R. Math. Acad. Sci. Paris 349 (2011) no. 11–12, 615619.CrossRefGoogle Scholar
Rahm, A. D., ‘Higher torsion in the Abelianization of the full Bianchi groups’, LMS J. Comput. Math., accepted (2013); http://hal.archives-ouvertes.fr/hal-00721690.Google Scholar
Rahm, A. D., ‘On a question of Serre’, C. R. Math. Acad. Sci. Paris 350 (2012) no. 15–16, 741744.CrossRefGoogle Scholar
Rahm, A. D. and Fuchs, M., ‘The integral homology of $\mathrm{PSL} \_ 2$ of imaginary quadratic integers with non-trivial class group’, J. Pure Appl. Algebra 215 (2011) 14431472.CrossRefGoogle Scholar
Scheutzow, A., ‘Computing rational cohomology and Hecke eigenvalues for Bianchi groups’, J. Number Theory 40 (1992) no. 3, 317328.CrossRefGoogle Scholar
Şengün, M. H., ‘On the integral cohomology of Bianchi groups’, Exp. Math. 20 (2011) no. 4, 487505.CrossRefGoogle Scholar
Şengün, M. H., ‘Arithmetic aspects of Bianchi groups’, Proceedings of Computations with Modular Forms, Heidelberg, 2011, to appear.Google Scholar
Serre, J.-P., ‘Le problème des groupes de congruence pour SL(2)’, Ann. of Math. (2) 92 (1970) 489527.CrossRefGoogle Scholar
Swan, R. G., ‘Generators and relations for certain special linear groups’, Adv. Math. 6 (1971) 177.CrossRefGoogle Scholar
Taylor, R., ‘Representations of Galois groups associated to modular forms’, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 Zürich, 1994 (Birkhäuser, Basel, 1995) 435442.Google Scholar
Whitley, E., ‘Modular symbols and elliptic curves over imaginary quadratic fields’, PhD Thesis, University of Exeter, 1990.Google Scholar
Wiese, G., ‘On the faithfulness of parabolic cohomology as a Hecke module over a finite field’, J. Reine Angew. Math. 606 (2007) 79103.Google Scholar
Yasaki, D., ‘‘Hyperbolic tessellations associated to Bianchi groups’’, Algorithmic Number Theory, Proceedings of 9th International Symposium ANTS-IX, Nancy, France, July 19–23, 2010 (Springer, Berlin, 2010).Google Scholar
You have Access
9
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On level one cuspidal Bianchi modular forms
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

On level one cuspidal Bianchi modular forms
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

On level one cuspidal Bianchi modular forms
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *