Skip to main content
×
×
Home

Proving the Birch and Swinnerton-Dyer conjecture for specific elliptic curves of analytic rank zero and one

  • Robert L. Miller (a1) (a2)
Abstract

We describe an algorithm to prove the Birch and Swinnerton-Dyer conjectural formula for any given elliptic curve defined over the rational numbers of analytic rank zero or one. With computer assistance we rigorously prove the formula for 16714 of the 16725 such curves of conductor less than 5000.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Proving the Birch and Swinnerton-Dyer conjecture for specific elliptic curves of analytic rank zero and one
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Proving the Birch and Swinnerton-Dyer conjecture for specific elliptic curves of analytic rank zero and one
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Proving the Birch and Swinnerton-Dyer conjecture for specific elliptic curves of analytic rank zero and one
      Available formats
      ×
Copyright
References
Hide All
[1]Agashe, A., Ribet, K. and Stein, W. A., ‘The Manin constant’, Pure Appl. Math. Q. 2 (2006) no. 2, 617636 part 2; MR 2251484(2007c:11076).
[2]Agashe, A. and Stein, W., ‘Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero’, Math. Comp. 74 (2005) no. 249, 455484.
[3]Belabas, K., Cohen, H.et al., PARI/GP, The Bordeaux Group, http://pari.math.u-bordeaux.fr/.
[4]Birch, B. J. and Swinnerton-Dyer, H. P. F., ‘Notes on elliptic curves. I’, J. Reine Angew. Math. 212 (1963) 725.
[5]Birch, B. J. and Swinnerton-Dyer, H. P. F., ‘Notes on elliptic curves. II’, J. Reine Angew. Math. 218 (1965) 79108.
[6]Breuil, C., Conrad, B., Diamond, F. and Taylor, R., ‘On the modularity of elliptic curves over ℚ: wild 3-adic exercises’, J. Amer. Math. Soc. 14 (2001) no. 4, 843939.
[7]Buhler, J. P., Gross, B. H. and Zagier, D. B., ‘On the conjecture of Birch and Swinnerton-Dyer for an elliptic curve of rank 3’, Math. Comp. 44 (1985) no. 170, 473481; MR 777279(86g:11037).
[8]Bump, D., Friedberg, S. and Hoffstein, J., ‘Non-vanishing theorems for L-functions of modular forms and their derivatives’, Invent. Math. 102 (1990) no. 3, 543618.
[9]Cannon, J., Steele, A.et al., MAGMA Computational Algebra System, The University of Sydney, http://magma.maths.usyd.edu.au/magma/.
[10]Cassels, J. W. S., ‘Arithmetic on curves of genus 1. VIII. On conjectures of Birch and Swinnerton-Dyer’, J. Reine Angew. Math. 217 (1965) 180199.
[11]Cha, B., ‘Vanishing of some cohomology groups and bounds for the Shafarevich–Tate groups of elliptic curves’, PhD Thesis, Johns Hopkins University, 2003.
[12]Cha, B., ‘Vanishing of some cohomology goups and bounds for the Shafarevich–Tate groups of elliptic curves’, J. Number Theory 111 (2005) 154178.
[13]Connell, I., Elliptic curve handbook, http://www.math.mcgill.ca/connell/public/ECH1, 1999.
[14]Cremona, J. E., Algorithms for modular elliptic curves, 2nd edn (Cambridge University Press, Cambridge, UK, 1997).
[15]Cremona, J., ‘The elliptic curve database for conductors to 130000’, Algorithmic number theory, Lecture Notes in Computer Science 4076 (Springer, Berlin, 2006) 1129; MR 2282912(2007k:11087).
[16]Cremona, J. E. and Fisher, T. A., ‘On the equivalence of binary quartics’, J. Symbolic Comput. 44 (2009) no. 6, 673682.
[17]Cremona, J. E. and Mazur, B., ‘Visualizing elements in the Shafarevich–Tate group’, Experiment. Math. 9 (2000) no. 1, 1328.
[18]Cremona, J. E., Prickett, M. and Siksek, S., ‘Height difference bounds for elliptic curves over number fields’, J. Number Theory 116 (2006) no. 1, 4268.
[19]Cremona, J. E. and Stoll, M., ‘Minimal models for 2-coverings of elliptic curves’, LMS J. Comput. Math. 5 (2002) 220243 (electronic).
[20]Darmon, H., Rational points on modular elliptic curves, CBMS Regional Conference Series in Mathematics 101 (Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2004).
[21]Edixhoven, B., ‘On the Manin constants of modular elliptic curves’, Arithmetic algebraic geometry (Texel, 1989) (Birkhäuser, Boston, MA, 1991) 2539.
[22]Fisher, T., ‘On 5 and 7 descents for elliptic curves’, PhD Thesis, University of Cambridge, 2000.
[23]Fisher, T., ‘Finding rational points on elliptic curves using 6-descent and 12-descent’, J. Algebra 320 (2008) no. 2, 853884.
[24]Flynn, E. V., Leprévost, F., Schaefer, E. F., Stein, W. A., Stoll, M. and Wetherell, J. L., ‘Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves’, Math. Comp. 70 (2001) no. 236, 16751697; MR 1836926(2002d:11072)(electronic).
[25]Greenberg, R. and Vatsal, V., ‘On the Iwasawa invariants of elliptic curves’, Invent. Math. 142 (2000) no. 1, 1763; MR 1784796(2001g:11169).
[26]Grigorov, G., ‘Kato’s Euler system and the main conjecture’, PhD Thesis, Harvard University, 2005.
[27]Grigorov, G., Jorza, A., Patrikis, S., Stein, W. and Tarniţǎ, C., ‘Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves’, Math. Comp. 78 (2009) 23972425.
[28]Gross, B. H., ‘Kolyvagin’s work on modular elliptic curves’, L-functions and arithmetic (Durham, 1989), London Mathematical Society Lecture Note Series 153 (Cambridge University Press, Cambridge, UK, 1991) 235256.
[29]Gross, B. and Zagier, D., ‘Heegner points and derivatives of L-series’, Invent. Math. 84 (1986) no. 2, 225320.
[30]Hochschild, G. and Serre, J.-P., ‘Cohomology of group extensions’, Trans. Amer. Math. Soc. 74 (1953) 110134.
[31]Jetchev, D., ‘Global divisibility of Heegner points and Tamagawa numbers’, Compos. Math. 144 (2008) no. 4, 811826.
[32]Jones, J. W., ‘Iwasawa L-functions for multiplicative abelian varieties’, Duke Math. J. 59 (1989) no. 2, 399420; MR 1016896(90m:11094).
[33]Kato, K., ‘p-adic Hodge theory and values of zeta functions of modular forms’, Astérisque 295 (2004) 117290 ix.
[34]Kolyvagin, V. A., ‘Euler systems’, The Grothendieck festschrift, vol. II, Progress in Mathematics 87 (Birkhäuser, Boston, MA, 1990) 435483.
[35]Lang, S., Number theory. III, vol. 60 (Springer, 1991).
[36]Matsuno, K., ‘Finite Λ-submodules of Selmer groups of abelian varieties over cyclotomic ℤp-extensions’, J. Number Theory 99 (2003) no. 2, 415443; MR 1969183(2004c:11098).
[37]Mazur, B., Tate, J. and Teitelbaum, J., ‘On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer’, Invent. Math. 84 (1986) no. 1, 148; MR 830037(87e:11076).
[38]Merriman, J. R., Siksek, S. and Smart, N. P., ‘Explicit 4-descents on an elliptic curve’, Acta Arith. 77 (1996) no. 4, 385404.
[39]Miller, R. L. and Stoll, M., Explicit isogeny descent on elliptic curves, http://arxiv.org/abs/1010.3334, 2010.
[40]Milne, J. S., Arithmetic duality theorems, second edn (BookSurge, Charleston, SC, 2006).
[41]Murty, M. R. and Murty, V. K., ‘Mean values of derivatives of modular L-series’, Ann. of Math. (2) 133 (1991) no. 3, 447475.
[42]Razar, M. J., ‘The non-vanishing of L(1) for certain elliptic curves with no first descents’, Amer. J. Math. 96 (1974) 104126; MR 0360596(50#13044a).
[43]Razar, M. J., ‘A relation between the two-component of the Tate–Šafarevič group and L(1) for certain elliptic curves’, Amer. J. Math. 96 (1974) 127144; MR 0360597(50#13044b).
[44]Rubin, K., ‘Congruences for special values of L-functions of elliptic curves with complex multiplication’, Invent. Math. 71 (1983) no. 2, 339364.
[45]Rubin, K., ‘The main conjectures of Iwasawa theory for imaginary quadratic fields’, Invent. Math. 103 (1991) no. 1, 2568.
[46]Schaefer, E. F. and Stoll, M., ‘How to do a p-descent on an elliptic curve’, Trans. Amer. Math. Soc. 356 (2004) 12091231.
[47]Serf, P., ‘The rank of elliptic curves over real quadratic number fields of class number 1’, PhD Thesis, Universität des Saarlandes, 1995.
[48]Siksek, S., ‘Descents on curves of genus 1’, PhD Thesis, University of Exeter, 1995.
[49]Silverman, J. H., The arithmetic of elliptic curves, Graduate Texts in Mathematics 106 (Springer, New York, 1992).
[50]Silverman, J. H., Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics 151 (Springer, New York, 1994).
[51]Skinner, E. and Urban, C., ‘The Iwasawa main conjectures for GL2’,http://www.math.columbia.edu/∼urban/eurp/MC.pdf.
[52]Stamminger, S., ‘Explicit 8-descent on elliptic curves’, PhD Thesis, International University Bremen, 2005.
[53]Stein, W., ‘Explicit approaches to modular abelian varieties’, PhD Thesis, University of California at Berkeley, 2000.
[54]Stein, W. and Wuthrich, C., ‘Algorithms for the arithmetic of elliptic curves using Iwasawa theory’, http://wstein.org/papers/shark, 2011.
[55]Stein, W.et al., Sage: Open Source Mathematical Software, The Sage Group,http://www.sagemath.org, 2010.
[56]Tate, J., On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki 9 (Société Mathématique de France, Paris, 1995) 415440. Exp. No. 306.
[57]Waldspurger, J.-L., ‘Sur les valuers de certaines fonctions L automorphes en leur centre de symétrie’, Compositio Math. 54 (1985) no. 2, 173242.
[58]Werner, A., ‘Local heights on abelian varieties with split multiplicative reduction’, Compositio Math. 107 (1997) no. 3, 289317; MR 1458753(98c:14039).
[59]Wiles, A. J., ‘Modular elliptic curves and Fermat’s last theorem’, Ann. of Math. (2) 2 (1995) no. 3, 443551.
[60]Womack, T., ‘Explicit descent on elliptic curves’, PhD Thesis, University of Nottingham, 2003.
[61]Woo, J., ‘Arithmetic of elliptic curves and surfaces: descents and quadratic sections’, PhD Thesis, Harvard University, 2010.
[62]Zhang, S.-W., ‘Gross–Zagier formula for GL(2) II’, Heegner points and Rankin L-series, Mathematical Sciences Research Institute Publications 49 (Cambridge University Press, Cambridge, 2004) 191214.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

LMS Journal of Computation and Mathematics
  • ISSN: -
  • EISSN: 1461-1570
  • URL: /core/journals/lms-journal-of-computation-and-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 122 *
Loading metrics...

Abstract views

Total abstract views: 463 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th August 2018. This data will be updated every 24 hours.