[1]Agashe, A., Ribet, K. and Stein, W. A., ‘The Manin constant’, Pure Appl. Math. Q. 2 (2006) no. 2, 617–636 part 2; MR 2251484(2007c:11076). [2]Agashe, A. and Stein, W., ‘Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero’, Math. Comp. 74 (2005) no. 249, 455–484.

[4]Birch, B. J. and Swinnerton-Dyer, H. P. F., ‘Notes on elliptic curves. I’, J. Reine Angew. Math. 212 (1963) 7–25.

[5]Birch, B. J. and Swinnerton-Dyer, H. P. F., ‘Notes on elliptic curves. II’, J. Reine Angew. Math. 218 (1965) 79–108.

[6]Breuil, C., Conrad, B., Diamond, F. and Taylor, R., ‘On the modularity of elliptic curves over ℚ: wild 3-adic exercises’, J. Amer. Math. Soc. 14 (2001) no. 4, 843–939.

[7]Buhler, J. P., Gross, B. H. and Zagier, D. B., ‘On the conjecture of Birch and Swinnerton-Dyer for an elliptic curve of rank 3’, Math. Comp. 44 (1985) no. 170, 473–481; MR 777279(86g:11037). [8]Bump, D., Friedberg, S. and Hoffstein, J., ‘Non-vanishing theorems for L-functions of modular forms and their derivatives’, Invent. Math. 102 (1990) no. 3, 543–618.

[10]Cassels, J. W. S., ‘Arithmetic on curves of genus 1. VIII. On conjectures of Birch and Swinnerton-Dyer’, J. Reine Angew. Math. 217 (1965) 180–199.

[11]Cha, B., ‘Vanishing of some cohomology groups and bounds for the Shafarevich–Tate groups of elliptic curves’, PhD Thesis, Johns Hopkins University, 2003.

[12]Cha, B., ‘Vanishing of some cohomology goups and bounds for the Shafarevich–Tate groups of elliptic curves’, J. Number Theory 111 (2005) 154–178.

[14]Cremona, J. E., Algorithms for modular elliptic curves, 2nd edn (Cambridge University Press, Cambridge, UK, 1997).

[15]Cremona, J., ‘The elliptic curve database for conductors to 130000’, Algorithmic number theory, Lecture Notes in Computer Science 4076 (Springer, Berlin, 2006) 11–29; MR 2282912(2007k:11087). [16]Cremona, J. E. and Fisher, T. A., ‘On the equivalence of binary quartics’, J. Symbolic Comput. 44 (2009) no. 6, 673–682.

[17]Cremona, J. E. and Mazur, B., ‘Visualizing elements in the Shafarevich–Tate group’, Experiment. Math. 9 (2000) no. 1, 13–28.

[18]Cremona, J. E., Prickett, M. and Siksek, S., ‘Height difference bounds for elliptic curves over number fields’, J. Number Theory 116 (2006) no. 1, 42–68.

[19]Cremona, J. E. and Stoll, M., ‘Minimal models for 2-coverings of elliptic curves’, LMS J. Comput. Math. 5 (2002) 220–243 (electronic).

[20]Darmon, H., Rational points on modular elliptic curves, CBMS Regional Conference Series in Mathematics 101 (Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2004).

[21]Edixhoven, B., ‘On the Manin constants of modular elliptic curves’, Arithmetic algebraic geometry (Texel, 1989) (Birkhäuser, Boston, MA, 1991) 25–39.

[22]Fisher, T., ‘On 5 and 7 descents for elliptic curves’, PhD Thesis, University of Cambridge, 2000.

[23]Fisher, T., ‘Finding rational points on elliptic curves using 6-descent and 12-descent’, J. Algebra 320 (2008) no. 2, 853–884.

[24]Flynn, E. V., Leprévost, F., Schaefer, E. F., Stein, W. A., Stoll, M. and Wetherell, J. L., ‘Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves’, Math. Comp. 70 (2001) no. 236, 1675–1697; MR 1836926(2002d:11072)(electronic). [25]Greenberg, R. and Vatsal, V., ‘On the Iwasawa invariants of elliptic curves’, Invent. Math. 142 (2000) no. 1, 17–63; MR 1784796(2001g:11169). [26]Grigorov, G., ‘Kato’s Euler system and the main conjecture’, PhD Thesis, Harvard University, 2005.

[27]Grigorov, G., Jorza, A., Patrikis, S., Stein, W. and Tarniţǎ, C., ‘Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves’, Math. Comp. 78 (2009) 2397–2425.

[28]Gross, B. H., ‘Kolyvagin’s work on modular elliptic curves’, *L*-functions and arithmetic (Durham, 1989), London Mathematical Society Lecture Note Series 153 (Cambridge University Press, Cambridge, UK, 1991) 235–256.

[29]Gross, B. and Zagier, D., ‘Heegner points and derivatives of *L*-series’, Invent. Math. 84 (1986) no. 2, 225–320.

[30]Hochschild, G. and Serre, J.-P., ‘Cohomology of group extensions’, Trans. Amer. Math. Soc. 74 (1953) 110–134.

[31]Jetchev, D., ‘Global divisibility of Heegner points and Tamagawa numbers’, Compos. Math. 144 (2008) no. 4, 811–826.

[32]Jones, J. W., ‘Iwasawa *L*-functions for multiplicative abelian varieties’, Duke Math. J. 59 (1989) no. 2, 399–420; MR 1016896(90m:11094). [33]Kato, K., ‘*p*-adic Hodge theory and values of zeta functions of modular forms’, Astérisque 295 (2004) 117–290 ix.

[34]Kolyvagin, V. A., ‘Euler systems’, The Grothendieck festschrift, vol. II, Progress in Mathematics 87 (Birkhäuser, Boston, MA, 1990) 435–483.

[35]Lang, S., Number theory. III, vol. 60 (Springer, 1991).

[36]Matsuno, K., ‘Finite Λ-submodules of Selmer groups of abelian varieties over cyclotomic ℤ_{p}-extensions’, J. Number Theory 99 (2003) no. 2, 415–443; MR 1969183(2004c:11098). [37]Mazur, B., Tate, J. and Teitelbaum, J., ‘On *p*-adic analogues of the conjectures of Birch and Swinnerton-Dyer’, Invent. Math. 84 (1986) no. 1, 1–48; MR 830037(87e:11076). [38]Merriman, J. R., Siksek, S. and Smart, N. P., ‘Explicit 4-descents on an elliptic curve’, Acta Arith. 77 (1996) no. 4, 385–404.

[40]Milne, J. S., Arithmetic duality theorems, second edn (BookSurge, Charleston, SC, 2006).

[41]Murty, M. R. and Murty, V. K., ‘Mean values of derivatives of modular L-series’, Ann. of Math. (2) 133 (1991) no. 3, 447–475.

[42]Razar, M. J., ‘The non-vanishing of *L*(1) for certain elliptic curves with no first descents’, Amer. J. Math. 96 (1974) 104–126; MR 0360596(50#13044a). [43]Razar, M. J., ‘A relation between the two-component of the Tate–Šafarevič group and *L*(1) for certain elliptic curves’, Amer. J. Math. 96 (1974) 127–144; MR 0360597(50#13044b). [44]Rubin, K., ‘Congruences for special values of *L*-functions of elliptic curves with complex multiplication’, Invent. Math. 71 (1983) no. 2, 339–364.

[45]Rubin, K., ‘The main conjectures of Iwasawa theory for imaginary quadratic fields’, Invent. Math. 103 (1991) no. 1, 25–68.

[46]Schaefer, E. F. and Stoll, M., ‘How to do a *p*-descent on an elliptic curve’, Trans. Amer. Math. Soc. 356 (2004) 1209–1231.

[47]Serf, P., ‘The rank of elliptic curves over real quadratic number fields of class number 1’, PhD Thesis, Universität des Saarlandes, 1995.

[48]Siksek, S., ‘Descents on curves of genus 1’, PhD Thesis, University of Exeter, 1995.

[49]Silverman, J. H., The arithmetic of elliptic curves, Graduate Texts in Mathematics 106 (Springer, New York, 1992).

[50]Silverman, J. H., Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics 151 (Springer, New York, 1994).

[52]Stamminger, S., ‘Explicit 8-descent on elliptic curves’, PhD Thesis, International University Bremen, 2005.

[53]Stein, W., ‘Explicit approaches to modular abelian varieties’, PhD Thesis, University of California at Berkeley, 2000.

[56]Tate, J., On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki 9 (Société Mathématique de France, Paris, 1995) 415–440. Exp. No. 306.

[57]Waldspurger, J.-L., ‘Sur les valuers de certaines fonctions L automorphes en leur centre de symétrie’, Compositio Math. 54 (1985) no. 2, 173–242.

[58]Werner, A., ‘Local heights on abelian varieties with split multiplicative reduction’, Compositio Math. 107 (1997) no. 3, 289–317; MR 1458753(98c:14039). [59]Wiles, A. J., ‘Modular elliptic curves and Fermat’s last theorem’, Ann. of Math. (2) 2 (1995) no. 3, 443–551.

[60]Womack, T., ‘Explicit descent on elliptic curves’, PhD Thesis, University of Nottingham, 2003.

[61]Woo, J., ‘Arithmetic of elliptic curves and surfaces: descents and quadratic sections’, PhD Thesis, Harvard University, 2010.

[62]Zhang, S.-W., ‘Gross–Zagier formula for GL(2) II’, Heegner points and Rankin *L*-series, Mathematical Sciences Research Institute Publications 49 (Cambridge University Press, Cambridge, 2004) 191–214.