Skip to main content
×
Home

A quasi-linear time algorithm for computing modular polynomials in dimension 2

  • Enea Milio (a1)
Abstract

We propose to generalize the work of Régis Dupont for computing modular polynomials in dimension $2$ to new invariants. We describe an algorithm to compute modular polynomials for invariants derived from theta constants and prove heuristically that this algorithm is quasi-linear in its output size. Some properties of the modular polynomials defined from quotients of theta constants are analyzed. We report on experiments with our implementation.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A quasi-linear time algorithm for computing modular polynomials in dimension 2
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      A quasi-linear time algorithm for computing modular polynomials in dimension 2
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      A quasi-linear time algorithm for computing modular polynomials in dimension 2
      Available formats
      ×
Copyright
References
Hide All
1. Belabas K. et al. , PARI/GP version 2.5.3, Bordeaux, 2012, http://pari.math.u-bordeaux.fr/.
2. Belding J., Bröker R., Enge A. and Lauter K., ‘Computing Hilbert class polynomials’, Algorithmic Number Theory 8th International Symposium (ANTS VIII) , Lecture Notes in Computer Science 5011 (Springer, Berlin, 2008) 282295.
3. Birkenhake C. and Lange H., Complex abelian varieties , Grundlehren der Mathematischen Wissenschaften 302 (Springer, 2003).
4. Bisson G. and Sutherland A.V., ‘Computing the endomorphism ring of an ordinary elliptic curve over a finite field’, J. Number Theory 113 (2011) 815831.
5. Bröker R. and Lauter K., ‘Modular polynomials for genus 2’, LMS J. Comput. Math. 12 (2009) no. 1, 326339.
6. Bröker R., Lauter K. and Sutherland A. V., ‘Modular polynomials via isogeny volcanoes’, Math. Comp. 81 (2012) 12011231.
7. Cosset R., ‘Applications des fonctions thêta à la cryptographie sur courbes hyperelliptiques’, PhD Thesis, Université Henri Poincaré - Nancy 1, 2011.
8. Davis P. and Rabinowitz P., Methods of Numerical Integration , 2nd edn (Academic Press, New York, 1984).
9. Dupont R., ‘Moyenne arithmético-géométrique, suites de Borchardt et applications’, PhD Thesis, École polytechnique, 2006, http://www.lix.polytechnique.fr/Labo/Regis.Dupont/.
10. Eisenträger K. and Lauter K., ‘A CRT algorithm for constructing genus 2 curves over finite fields’, Arithmetic, Geometry and Coding Theory (AGCT-10) , Séminaires et Congrès 21 (Société Mathématique de France, Paris, 2009) 161176.
11. Elkies N., ‘Elliptic and modular curves over finite fields and related computational issues’, Computational perspectives on number theory: Proceedings of the conference in honor of A.O.L. Atkin , AMS/IP Studies in Advanced Mathematics 7 (American Mathematical Society, Boston, 1998) 2176.
12. Enge A., ‘Computing modular polynomials in quasi-linear time’, Math. Comp. 78 (2009) 18091824, http://hal.inria.fr/hal-00823745.
13. Enge A., PARI-GNUMP, version 0.0.1, February 2014, http://www.multiprecision.org/index.php?prog=pari-gnump/.
14. Enge A., Gastineau M., Théveny P. and Zimmermann P., GNU MPC - a library for multiprecision complex arithmetic with exact rounding, version 1.0.1, INRIA, September 2012, http://mpc.multiprecision.org/.
15. Enge A. and Sutherland A. V., ‘Class invariants by the CRT method’, Algorithmic Number Theory 9th International Symposium (ANTS IX) , Lecture Notes in Computer Science 6197 (Springer, Berlin, 2010) 142156.
16. Enge A. and Thomé E., ‘Computing class polynomials for abelian surfaces’, Exp. Math. 23 (2014) 129145.
17. Enge A. and Thomé. E., CMH - computation of Igusa class polynomials, version 1.0, March 2014,http://cmh.gforge.inria.fr/.
18. Freitag E., Siegelsche Modulfunktionen , Grundlehren der Mathematischen Wissenschaften 254 (Springer, Berlin, 1983).
19. Gottschling E., ‘Explizite Bestimmung der Randflächen des Fundamentalbereiches der Modulgruppe zweiten Grades’, Ann. of Math. (2) 138 (1959) 103124.
20. Granlund T et al. , GMP - the GNU multiple precision arithmetic library, version 5.1.1, February 2013, http://gmplib.org/.
21. Gruenewald D., ‘Explicit algorithms for Humbert surfaces’, PhD Thesis, University of Sydney, 2008.
22. Hanrot G., Lefèvre V., Pélissier P. and Zimmermann P. et al. , GNU MPFR - a library for multiple-precision floating-point computations with exact rounding, version 3.1.1, July 2012,http://www.mpfr.org/.
23. Hirzebruch F. and Van der Geer G., Lectures on Hilbert modular surfaces , Séminaire de Mathématiques Supérieures 77 (Presses de l’université de Montréal, Montréal, 1981).
24. van der Hoeven J., ‘Fast evaluation of holonomic functions’, Theoret. Comput. Sci. 210 (1999) no. 1, 199215.
25. von zur Gathen J. and Jürgen G., Modern Computer Algebra (Cambridge University Press, New York, NY, 1999).
26. Igusa J. I., ‘Arithmetic variety of moduli for genus 2’, Ann. of Math. (2) 72 (1960) no. 3, 612649.
27. Igusa J. I., ‘On Siegel modular forms of genus 2’, Amer. J. Math. 84 (1962) 175200.
28. Igusa J. I., Theta functions , Grundlehren der Mathematischen Wissenschaften 194 (Springer, Berlin, 1972).
29. Klingen H., Introductory lectures on Siegel modular forms , Cambridge Studies in Advanced Mathematics 20 (Cambridge University Press, Cambridge, 1990).
30. Lang S., Elliptic functions , Graduate Text in Mathematics 112 (Springer, New York, NY, 1987).
31. Manni R., ‘Modular varieties with level 2 theta structure’, Amer. J. Math. 116 (1994) 14891511.
32. Mestre J.-F., ‘Construction de courbes de genre 2 à partir de leurs modules’, Effective methods in algebraic geometry , Progress in Mathematics 94 (Birkhäuser, Boston, MA, 1991) 313334.
33. Molin P., ‘Intégration numérique et calculs de fonctions inline-graphic $L$ ’, PhD Thesis, Université Bordeaux 1, 2010.https://github.com/pascalmolin/hcperiods.
34. Mumford D., Abelian Varieties , Tata Institute of fundamental research studies in mathematics (Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, 1970).
35. Mumford D., Tata lectures on theta I , Progress in Mathematics 28 (Birkhäuser, Boston, MA, 1983).
36. Mumford D., Tata lectures on theta II , Progress in Mathematics 43 (Birkhäuser, Boston, MA, 1984).
37. Runge B., ‘Endomorphism rings of abelian surfaces and projective models of their moduli spaces’, Tohoku Math. J. (2) 51 (1999) no. 3, 283303.
38. Schertz R., Complex multiplication , New Mathematical Monographs 15 (Cambridge University Press, New York, NY, 2010).
39. Schläfli L., ‘Beweis der Hermiteschen Verwandlungstafeln für die elliptischen Modulfunktionen’, J. Reine Angew. Math. 72 (1870) 360369.
40. Schoof R., ‘Counting points on elliptic curves over finite fields’, J. Théor. Nombres Bordeaux 7 (1995) 219264.
41. Schönhage A. and Strassen V., ‘Schnelle Multiplikation grosser Zahlen’, Computing 7 (1971) 281292.
42. Streng M., ‘Complex multiplication of abelian surfaces’, PhD Thesis, Universiteit Leiden, 2010.
43. Sutherland A. V., ‘Computing Hilbert class polynomials with the Chinese remainder theorem’, Math. Comp. 80 (2011) 501538.
44. Thomae J., ‘Beitrag zur Bestimmung von 𝜃(0, 0, …, 0) durch die Klassenmoduln algebraischer Funktionen’, J. Reine Angew. Math. 70 (1870) 201222.
45. Weng A., ‘Constructing hyperelliptic curves of genus 2 suitable for cryptography’, Math. Comp. 72 (2003) no. 241, 435458.
46. Zagier Don, Modular forms of one variable. Notes based on a course given in Utrecht, 1991.http://people.mpim-bonn.mpg.de/zagier/files/tex/UtrechtLectures/UtBook.pdf.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

LMS Journal of Computation and Mathematics
  • ISSN: -
  • EISSN: 1461-1570
  • URL: /core/journals/lms-journal-of-computation-and-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 58 *
Loading metrics...

Abstract views

Total abstract views: 88 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd November 2017. This data will be updated every 24 hours.