Hostname: page-component-5b777bbd6c-f9nfp Total loading time: 0 Render date: 2025-06-18T10:38:26.988Z Has data issue: false hasContentIssue false

Generalised Temperley–Lieb algebras of type G(r, p, n)

Published online by Cambridge University Press:  08 April 2025

GUS LEHRER
Affiliation:
School of Mathematics and Statistics, University of Sydney, N.S.W. 2006, Australia e-mail: gustav.lehrer@sydney.edu.au
MENGFAN LYU
Affiliation:
School of Computer, Data and Mathematical Sciences, Western Sydney University, Locked Bag 1797, Penrith, N.S.W. 2751, Australia e-mail: mengfan.lyu@westernsydney.edu.au

Abstract

In an earlier work, we defined a “generalised Temperley–Lieb algebra” $TL_{r, 1, n}$ corresponding to the imprimitive reflection group G(r, 1, n) as a quotient of the cyclotomic Hecke algebra. In this work we introduce the generalised Temperley–Lieb algebra $TL_{r, p, n}$ which corresponds to the complex reflection group G(r, p, n). Our definition identifies $TL_{r, p, n}$ as the fixed-point subalgebra of $TL_{r, 1, n}$ under a certain automorphism $\sigma$. We prove the cellularity of $TL_{r, p, n}$ by proving that $\sigma$ induces a special shift automorphism with respect to the cellular structure of $TL_{r, 1, n}$. We also give a description of the cell modules of $TL_{r, p, n}$ and their decomposition numbers, and finally we point to how our algebras might be categorified and could lead to a diagrammatic theory.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ariki, S.. Representation theory of a Hecke algebra of G(r, p, n). J. Algebra 177 (1995), 164185.CrossRefGoogle Scholar
Broué, M., Malle, G., and Rouquier, R.. Complex reflection groups, braid groups, Hecke algebras. J. Reine Angew. Math. 1998 (1998), 127190.Google Scholar
Brundan, J. and Kleshchev, A.. Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras. Invent. Math. 178a (2009)a, 451–484.CrossRefGoogle Scholar
Brundan, J. and Kleshchev, A.. Graded decomposition numbers for cyclotomic Hecke algebras. Adv. Math. 222b (2009)b, 1883–1942.CrossRefGoogle Scholar
Graham, J. and Lehrer, G.. Cellular algebras. Invent. Math. 123 (1996), 134.CrossRefGoogle Scholar
Graham, J. and Lehrer, G.. Diagram algebras, hecke algebras and decomposition numbers at roots of unity. Ann. Sci. École Norm. Sup. 36 (2003), 479524.CrossRefGoogle Scholar
Grossman, P.. Forked Temperley–Lieb algebras and intermediate subfactors. J. Funct. Anal. 247 (2007), 477491.CrossRefGoogle Scholar
Hu, J., Mathas, A., and Rostam, S.. Skew cellularity of the hecke algebras of type $G(\ell,p, n)$ . Represent. Theory Amer. Math. Soc. 27 (2023), 508573.CrossRefGoogle Scholar
Iohara, K., Lehrer, G., and Zhang, R.. Equivalence of a tangle category and a category of infinite dimensional $\textrm {U}_q(\mathfrak {sl}_2)$ -modules. Represent. Theory Amer. Math. Soc. 25 (2021), 265299.CrossRefGoogle Scholar
Khovanov, M. and Lauda, A. D.. A diagrammatic approach to categorification of quantum groups I. Represent. Theory 13 (2009), 309347.CrossRefGoogle Scholar
Lehrer, G. and Lyu, M.. Generalised Temperley–Lieb algebras of type G(r, 1, n). J. Pure Appl. Algebra 227 (2023), 107402.CrossRefGoogle Scholar
Li, Y. and Shi, X.. Semi-simplicity of Temperley–Lieb algebras of type D. ArXiv e-prints (2021).CrossRefGoogle Scholar
Maturana, D. L. and Ryom-Hansen, S.. Graded cellular basis and Jucys-Murphy elements for generalised blob algebras. J. Pure Appl. 224 (2020).CrossRefGoogle Scholar
Murphy, G.. The representations of hecke algebras of type $a_n$ . J. Algebra 173 (1995), 97121.CrossRefGoogle Scholar
Rostam, S.. Cyclotomic quiver hecke algebras and Hecke algebra of G(r, p, n). Trans. Amer. Math. Soc. 371 (2018), 38773916.CrossRefGoogle Scholar
Rouquier, R.. 2-kac-moody algebras. ArXiv: Represent. Theory (2008).Google Scholar
Sun, J.. Cyclotomic Temperley–Lieb algebra of type D and its representation theory. Commun. Algebra 38 (2009), 94118.CrossRefGoogle Scholar
Temperley, H. N. V. and Lieb, E. H.. Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem. Proc. Roy. Soc. London, Series A, Mathematical and Physical Sciences 322 (1971), 251–280.Google Scholar