Hostname: page-component-5b777bbd6c-gcwzt Total loading time: 0 Render date: 2025-06-18T09:52:09.671Z Has data issue: false hasContentIssue false

On the Aldous-Caputo Spectral Gap Conjecture for Hypergraphs

Published online by Cambridge University Press:  21 May 2025

GIL ALON
Affiliation:
Department of Mathematics and Computer Science, The Open University of Israel, 1 University Road, P. O. Box 808, Raanana, 4353701, Israel. e-mail: gilal@openu.ac.il
GADY KOZMA
Affiliation:
Faculty of Mathematics and Computer Science, Ziskind Building, Weizmann Institute, Rehovot, 7610001, Israel. e-mail: gady.kozma@weizmann.ac.il
DORON PUDER
Affiliation:
School of Mathematical Sciences, Schreiber building, Tel Aviv University, Tel Aviv, 6997801, Israel. e-mail: doronpuder@gmail.com

Abstract

In their celebrated paper [CLR10], Caputo, Liggett and Richthammer proved Aldous’ conjecture and showed that for an arbitrary finite graph, the spectral gap of the interchange process is equal to the spectral gap of the underlying random walk. A crucial ingredient in the proof was the Octopus Inequality — a certain inequality of operators in the group ring $\mathbb{R}\left[{\mathrm{Sym}}_{n}\right]$ of the symmetric group. Here we generalise the Octopus Inequality and apply it to generalising the Caputo–Liggett–Richthammer Theorem to certain hypergraphs, proving some cases of a conjecture of Caputo.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aldous, D., Caputo, P., Durrett, R., Holroyd, A. E., Jung, P. U. and Puha, A. L.. The life and mathematical legacy of Thomas M. Liggett. Notices Amer. Math. Soc. 68(1) 2020.10.1090/noti2203CrossRefGoogle Scholar
Alon, G. and Kozma, G.. Ordering the representations of $S_n$ using the interchange process. Canad. Math. Bull. 56(1) (2013), 13–30.10.4153/CMB-2011-147-2CrossRefGoogle Scholar
Alon, G. and Kozma, G.. Comparing with octopi. Ann. Inst. H. Poincaré Probab. Statist. 56(4) (2020), 2672–2685.10.1214/20-AIHP1054CrossRefGoogle Scholar
Bristiel, A. and Caputo, P.. Entropy inequalities for random walks and permutations. Ann. Ins. Henri Poincaré (B) Probab. Stat. 60(1) (2024), 54–81.10.1214/22-AIHP1267CrossRefGoogle Scholar
Cesi, F.. A few remarks on the octopus inequality and Aldous’ spectral gap conjecture. Comm. Algebra. 44(1) (2016), 279–302.10.1080/00927872.2014.975349CrossRefGoogle Scholar
Chen, J. P.. The moving particle lemma for the exclusion process on a weighted graph. Electron. Commun. Probab. 22 (2017), 1–13.Google Scholar
Caputo, P., Liggett, T. and Richthammer, T.. Proof of Aldous’ spectral gap conjecture. J. Amer. Math. Soc. 23(3) (2010), 831–851.10.1090/S0894-0347-10-00659-4CrossRefGoogle Scholar
Diaconis, P. and Shahshahani, M.. Generating a random permutation with random transpositions. Z. Wahrscheinlichkeitstheorie verw. Gebiete 57(2) (1981), 159–179.10.1007/BF00535487CrossRefGoogle Scholar
Fulton, W. and Harris, J.. Representation theory: a first course, vol. 129. (Springer Science & Business Media, 2013).Google Scholar
Handjani, S. and Jungreis, D.. Rate of convergence for shuffling cards by transpositions. J. Theoret. Probab. 9 (1996), 983–993.Google Scholar
Marcus, A. W., Spielman, D. A. and Srivastava, N.. Ramanujan graphs and the solution of the Kadison–Singer problem. In International Congress of Mathematicans, ICM 2014, vol. 3 (2014), p. 363–386.Google Scholar
Piras, D.. Generalizations of Aldous’ Spectral Gap Conjecture. PhD. thesis. Tesi di Laurea, Universitá degli Studi Roma Tre (2010).Google Scholar
Parzanchevski, O. and Puder, D.. Aldous’s spectral gap conjecture for normal sets. Trans. Amer. Math. Soc. 373(10) (2020), 7067–7086.10.1090/tran/8155CrossRefGoogle Scholar