Skip to main content
    • Aa
    • Aa
  • Mathematical Proceedings of the Cambridge Philosophical Society, Volume 148, Issue 3
  • May 2010, pp. 409-423

Torelli theorem for the moduli space of framed bundles

  • I. BISWAS (a1), T. GÓMEZ (a2) and V. MUÑOZ (a2)
  • DOI:
  • Published online: 26 November 2009

Let X be an irreducible smooth complex projective curve of genus g ≥ 2, and let xX be a fixed point. Fix r > 1, and assume that g > 2 if r = 2. A framed bundle is a pair (E, φ), where E is coherent sheaf on X of rank r and fixed determinant ξ, and φ: Exr is a non–zero homomorphism. There is a notion of (semi)stability for framed bundles depending on a parameter τ > 0, which gives rise to the moduli space of τ–semistable framed bundles τ. We prove a Torelli theorem for τ, for τ > 0 small enough, meaning, the isomorphism class of the one–pointed curve (X, x), and also the integer r, are uniquely determined by the isomorphism class of the variety τ.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[2]M. F. Atiyah and R. Bott The Yang-Mills equations over Riemann surfaces. Roy. Soc. London Philos. Trans. Ser. A 308 (1982), 523615.

[3]I. Biswas , L. Brambila-Paz and P. E. Newstead Stability of projective Poincaré and Picard bundles. Bull. Lond. Math. Soc. 41 (2009), no. 3, 458472.

[4]I. Biswas and T. Gómez Simplicity of stable principal sheaves. Bull. Lond. Math. Soc. 40 (2008), 163171.

[5]S. B. Bradlow , O. García-Prada , V. Mercat , V. Muñoz and P. E. Newstead On the geometry of moduli spaces of coherent systems on algebraic curves. Internat. J. Math. 18 (2007), 411453.

[7]J.-M. Drézet and M. S. Narasimhan Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques. Invent. Math. 97 (1989), 5394.

[8]N. Hitchin Stable bundles and integrable systems. Duke Math. J. 54 (1987), 91114.

[9]D. Huybrechts and M. Lehn Framed modules and their moduli. Internat. J. Math. 6 (1995), 297324.

[11]A. Kouvidakis and T. Pantev The automorphism group of the moduli space of semistable vector bundles. Math. Ann. 302 (1995), 225268.

[16]C. Simpson Moduli of representations of the fundamental group of a smooth projective variety I. Publ. Math. IHES 79 (1994), 47129.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *