Skip to main content
×
Home

Torelli theorem for the moduli space of framed bundles

  • I. BISWAS (a1), T. GÓMEZ (a2) and V. MUÑOZ (a2)
Abstract
Abstract

Let X be an irreducible smooth complex projective curve of genus g ≥ 2, and let xX be a fixed point. Fix r > 1, and assume that g > 2 if r = 2. A framed bundle is a pair (E, φ), where E is coherent sheaf on X of rank r and fixed determinant ξ, and φ: Exr is a non–zero homomorphism. There is a notion of (semi)stability for framed bundles depending on a parameter τ > 0, which gives rise to the moduli space of τ–semistable framed bundles τ. We prove a Torelli theorem for τ, for τ > 0 small enough, meaning, the isomorphism class of the one–pointed curve (X, x), and also the integer r, are uniquely determined by the isomorphism class of the variety τ.

Copyright
References
Hide All
[1]Atiyah M. F.Vector bundles over an elliptic curve. Proc. London Math. Soc. (3) 7 (1957), 414452.
[2]Atiyah M. F. and Bott R.The Yang-Mills equations over Riemann surfaces. Roy. Soc. London Philos. Trans. Ser. A 308 (1982), 523615.
[3]Biswas I., Brambila-Paz L. and Newstead P. E.Stability of projective Poincaré and Picard bundles. Bull. Lond. Math. Soc. 41 (2009), no. 3, 458472.
[4]Biswas I. and Gómez T.Simplicity of stable principal sheaves. Bull. Lond. Math. Soc. 40 (2008), 163171.
[5]Bradlow S. B., García-Prada O., Mercat V., Muñoz V. and Newstead P. E.On the geometry of moduli spaces of coherent systems on algebraic curves. Internat. J. Math. 18 (2007), 411453.
[6]Brambila-Paz L., Grzegorczyk I. and Newstead P. E.Geography of Brill-Noether loci for small slopes. J. Alg. Geom. 6 (1997), 645669.
[7]Drézet J.-M. and Narasimhan M. S.Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques. Invent. Math. 97 (1989), 5394.
[8]Hitchin N.Stable bundles and integrable systems. Duke Math. J. 54 (1987), 91114.
[9]Huybrechts D. and Lehn M.Framed modules and their moduli. Internat. J. Math. 6 (1995), 297324.
[10]Huybrechts D. and Lehn M. The geometry of moduli spaces of sheaves. Aspects of Mathematics E31, (Vieweg, Braunschweig/Wiesbaden 1997).
[11]Kouvidakis A. and Pantev T.The automorphism group of the moduli space of semistable vector bundles. Math. Ann. 302 (1995), 225268.
[12]Luna D. Slices étales. Sur les groupes algébriques. pp. 81–105. Bull. Soc. Math. France, Paris, Memoire 33 Soc. Math. France, Paris, 1973.
[13]Maruyama M.Openness of a family of torsion free sheaves. Jour. Math. Kyoto Univ. 16 (1976), 627637.
[14]Narasimhan M. S. and Ramanan S. Geometry of Hecke cycles I, C. P. Ramanujam – a tribute. pp. 291345. Tata Inst. Fund. Res. Studies in Math., 8 (Springer, 1978).
[15]Seshadri C. S.Fibrés vectoriels sur les courbes algébriques. Astérisque 96 (1982), 209 pp.
[16]Simpson C.Moduli of representations of the fundamental group of a smooth projective variety I. Publ. Math. IHES 79 (1994), 47129.
[17]Tyurin A. N.Classification of vector bundles over an algebraic curve of arbitrary genus. Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 657688.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 94 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th November 2017. This data will be updated every 24 hours.