Skip to main content
    • Aa
    • Aa

Torelli theorem for the moduli space of framed bundles

  • I. BISWAS (a1), T. GÓMEZ (a2) and V. MUÑOZ (a2)

Let X be an irreducible smooth complex projective curve of genus g ≥ 2, and let xX be a fixed point. Fix r > 1, and assume that g > 2 if r = 2. A framed bundle is a pair (E, φ), where E is coherent sheaf on X of rank r and fixed determinant ξ, and φ: Exr is a non–zero homomorphism. There is a notion of (semi)stability for framed bundles depending on a parameter τ > 0, which gives rise to the moduli space of τ–semistable framed bundles τ. We prove a Torelli theorem for τ, for τ > 0 small enough, meaning, the isomorphism class of the one–pointed curve (X, x), and also the integer r, are uniquely determined by the isomorphism class of the variety τ.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 6 *
Loading metrics...

Abstract views

Total abstract views: 76 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 29th June 2017. This data will be updated every 24 hours.