Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-20T00:02:58.640Z Has data issue: false hasContentIssue false

Tropical friezes and the index in higher homological algebra

Published online by Cambridge University Press:  16 March 2020

PETER JØRGENSEN*
Affiliation:
School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon TyneNE1 7RU, United Kingdom, e-mail: peter.jorgensen@newcastle.ac.uk

Abstract

Cluster categories and cluster algebras encode two dimensional structures. For instance, the Auslander–Reiten quiver of a cluster category can be drawn on a surface, and there is a class of cluster algebras determined by surfaces with marked points.

Cluster characters are maps from cluster categories (and more general triangulated categories) to cluster algebras. They have a tropical shadow in the form of so-called tropical friezes, which are maps from cluster categories (and more general triangulated categories) to the integers.

This paper will define higher dimensional tropical friezes. One of the motivations is the higher dimensional cluster categories of Oppermann and Thomas, which encode (d + 1)-dimensional structures for an integer d ⩾ 1. They are (d + 2)-angulated categories, which belong to the subject of higher homological algebra.

We will define higher dimensional tropical friezes as maps from higher cluster categories (and more general (d + 2)-angulated categories) to the integers. Following Palu, we will define a notion of (d + 2)-angulated index, establish some of its properties, and use it to construct higher dimensional tropical friezes.

Type
Research Article
Copyright
© Cambridge Philosophical Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amiot, C.. Cluster categories for algebras of global dimension 2 and quivers with potential. Ann. Inst. Fourier (Grenoble) 59 (2009), 25252590.10.5802/aif.2499CrossRefGoogle Scholar
Auslander, M. and Reiten, I.. Stable equivalence of dualising R-varieties. Adv. Math. 12 (1974), 306366.10.1016/S0001-8708(74)80007-1CrossRefGoogle Scholar
Buan, A. B., Marsh, R. J., Reineke, M., Reiten, I., and Todorov, G.. Tilting theory and cluster combinatorics. Adv. Math. 204 (2006), 572618.CrossRefGoogle Scholar
Coxeter, H. S. M.. Frieze patterns. Acta Arith. 18 (1971), 297310.10.4064/aa-18-1-297-310CrossRefGoogle Scholar
Fedele, F.. Auslander–Reiten (d + 2)-angles in subcategories and a (d + 2)-angulated generalisation of a theorem by Brüning. J. Pure Appl. Algebra 223 (2019), 35543580.10.1016/j.jpaa.2018.11.017CrossRefGoogle Scholar
Fomin, S., Shapiro, M., and Thurston, D.. Cluster algebras and triangulated surfaces part I: cluster complexes. Acta Math. 201 (2008), 83146.10.1007/s11511-008-0030-7CrossRefGoogle Scholar
Fomin, S. and Zelevinsky, A.. Cluster algebras I: foundations. J. Amer. Math. Soc. 15 (2002), 497529.CrossRefGoogle Scholar
Geiss, C., Keller, B., and Oppermann, S.. n-angulated categories. J. Reine Angew. Math. 675 (2013), 101120.Google Scholar
Guo, L.. On tropical friezes associated with Dynkin diagrams. Internat. Math. Res. Notices 2013, no. 18, 42434284.CrossRefGoogle Scholar
Holm, T. and Jørgensen, P. Generalised friezes and a modified Caldero–Chapoton map depending on a rigid object. Nagoya Math. J. 218 (2015), 101124.Google Scholar
Iyama, O.. Higher-dimensional Auslander–Reiten theory on maximal orthogonal subcategories. Adv. Math. 210 (2007), 2250.10.1016/j.aim.2006.06.002CrossRefGoogle Scholar
Iyama, O. and Oppermann, S.. n-representation-finite algebras and n-APR tilting. Trans. Amer. Math. Soc. 363 (2011), 65756614.10.1090/S0002-9947-2011-05312-2CrossRefGoogle Scholar
Iyama, O. and Oppermann, S.. Stable categories of higher preprojective algebras. Adv. Math. 244 (2013), 2368.10.1016/j.aim.2013.03.013CrossRefGoogle Scholar
Iyama, O. and Yoshino, Y.. Mutation in triangulated categories and rigid Cohen–Macaulay modules. Invent. Math. 172 (2008), 117168.10.1007/s00222-007-0096-4CrossRefGoogle Scholar
Keller, B. and Reiten, I.. Cluster–tilted algebras are Gorenstein and stably Calabi-Yau. Adv. Math. 211 (2007), 123151.10.1016/j.aim.2006.07.013CrossRefGoogle Scholar
McMahon, J.. Higher frieze patterns, preprint (2017). arXiv:1703.01864v2Google Scholar
Neeman, A.. Some new axioms for triangulated categories. J. Algebra 139 (1991), 221255.10.1016/0021-8693(91)90292-GCrossRefGoogle Scholar
Oppermann, S. and Thomas, H.. Higher-dimensional cluster combinatorics and representation theory. J. Eur. Math. Soc. (JEMS) 14 (2012), 16791737.10.4171/JEMS/345CrossRefGoogle Scholar
Palu, Y.. Cluster characters for 2-Calabi–Yau triangulated categories. Ann. Inst. Fourier (Grenoble) 58 (2008), 22212248.10.5802/aif.2412CrossRefGoogle Scholar
J. Propp. The combinatorics of frieze patterns and Markoff numbers, preprint (2005). arXiv:0511633v4Google Scholar
Vaso, L.. n-Cluster tilting subcategories of representation-directed algebras. J. Pure Appl. Algebra 223 (2019), 21012122.10.1016/j.jpaa.2018.07.010CrossRefGoogle Scholar