Skip to main content Accessibility help
×
Home

Variation of the algebraic λ-invariant over a solvable extension

  • DANIEL DELBOURGO (a1)

Abstract

Fix an odd prime p. Let $\mathcal{D}_n$ denote a non-abelian extension of a number field K such that $K\cap\mathbb{Q}(\mu_{p^{\infty}})=\mathbb{Q}, $ and whose Galois group has the form $ \text{Gal}\big(\mathcal{D}_n/K\big)\cong \big(\mathbb{Z}/p^{n'}\mathbb{Z}\big)^{\oplus g}\rtimes \big(\mathbb{Z}/p^n\mathbb{Z}\big)^{\times}\ $ where g > 0 and $0 \lt n'\leq n$ . Given a modular Galois representation $\overline{\rho}:G_{\mathbb{Q}}\rightarrow \text{GL}_2(\mathbb{F})$ which is p-ordinary and also p-distinguished, we shall write $\mathcal{H}(\overline{\rho})$ for the associated Hida family. Using Greenberg’s notion of Selmer atoms, we prove an exact formula for the algebraic λ-invariant

\begin{equation} \lambda^{\text{alg}}_{\mathcal{D}_n}(f) \;=\; \text{the number of zeroes of } \text{char}_{\Lambda}\big(\text{Sel}_{\mathcal{D}_n^{\text{cy}}}\big(f\big)^{\wedge}\big) \end{equation}
at all $f\in\mathcal{H}(\overline{\rho})$ , under the assumption $\mu^{\text{alg}}_{K(\mu_p)}(f_0)=0$ for at least one form f0. We can then easily deduce that $\lambda^{\text{alg}}_{\mathcal{D}_n}(f)$ is constant along branches of $\mathcal{H}(\overline{\rho})$ , generalising a theorem of Emerton, Pollack and Weston for $\lambda^{\text{alg}}_{\mathbb{Q}(\mu_{p})}(f)$ .

For example, if $\mathcal{D}_{\infty}=\bigcup_{n\geq 1}\mathcal{D}_n$ has the structure of a p-adic Lie extension then our formulae include the cases where: either (i) $\mathcal{D}_{\infty}/K$ is a g-fold false Tate tower, or (ii) $\text{Gal}\big(\mathcal{D}_{\infty}/K(\mu_p)\big)$ has dimension ≤ 3 and is a pro-p-group.

Copyright

References

Hide All
[1]Bertolini, M. and Darmon, H. Iwasawa’s main conjecture for elliptic curves over anticyclotomic $\mathbb{Z}_p$-extensions. Annals of Mathematics 162 (2005), 164.
[2]Castella, F., Kim, C.-H. and Longo, M.. Variation of anticyclotomic Iwasawa invariants in Hida families. Algebra Number Theory 11 (2017), 23392368.
[3]Chida, M. and Hsieh, M.-L.. On the anticyclotomic main conjecture for modular forms. Compositio Math. 151 (2015), 863897.
[4]Coates, J. and Sujatha, R.. Fine Selmer groups of elliptic curves over p-adic Lie extensions. Math. Ann. 331 (2005), 809839.
[5]Darmon, H. and Tian, Y.. Heegner points over towers of Kummer extensions. Canadian J. Math. 62 (2010), 10601082.
[6]Delbourgo, D.. Variation of the analytic λ-invariant over a solvable extension, to appear in the Proc London Math Soc.
[7]Delbourgo, D. and Lei, A.. Estimating the growth in Mordell–Weil ranks and Shafarevich-Tate groups over Lie extensions. Ramanujan Journal 43 (2017), 2968.
[8]Delbourgo, D. and Peters, L.. Higher order congruences amongst Hasse–Weil L-values. J. Aust. Math. Society 98 (2015), 138.
[9]Delbourgo, D. and Qin, C.. K1-congruences for three-dimensional Lie groups. Annales Math. du Québec 43 (2019), 161211.
[10]Deligne, P.. Formes modulaires et représentations l-adiques, Séminaires Bourbaki. Lecture Notes in Math. 179 (Springer Verlag 1969), 139172.
[11]Emerton, M., Pollack, R. and Weston, T.. Variation of Iwasawa invariants in Hida families. Inventi. Math. 163 (2006), 523580.
[12]Greenberg., R. Iwasawa theory for elliptic curves, in Arithmetic Theory of Elliptic Curves, Cetraro (1997), Lecture Notes in Math. 1716 (1997), 51144.
[13]Greenberg, R.. Iwasawa theory, projective modules, and modular representations. Mem. Ameri. Math. Soc. 992 (2011), 185 pages.
[14]Greenberg, R. and Vatsal, V.. On the Iwasawa invariants of elliptic curves. Inventi. Math. 142 (2000), 1763.
[15]Hida, H.. Galois representations into $\text{GL}_2(\mathbb{Z}_p[[X]])$. Inventi. Math. 85 (1986), 545613.
[16]Jha, S.. Fine Selmer group of Hida deformations over non-commutative p-adic Lie extensions. Asian Journal Math. 16 (2012), 353366.
[17]Kato, K.. p-adic Hodge theory and values of zeta functions of modular forms. Astérisque 295 ix (2004), 117-290.
[18]Khare, C. and Wintenberger, J.-P.. Serre’s modularity conjecture I. Inventi. Math. 178 (2009), 485504.
[19]Lim, M. F.. $\mathfrak{M}_H(G)$-property and congruence of Galois representations. preprint 2019.
[20]Livné, R.. On the conductors of mod l Galois representations coming from modular forms. J. Number Theory 31 (1989), 133141.
[21]Mazur, B., Tate, J. and Teitelbaum, J.. On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Inventi. Math. 84 (1986), 148.
[22]Pollack, R. and Weston, T.. On anticyclotomic μ-invariants of modular forms. Compositio Math. 147 (2011), 13531381.
[23]Serre, J.-P.. Linear representations of finite groups. Graduate Texts in Math. 42, (Springer–Verlag, New York 1977).
[24]Shekar, S. and Sujatha, R.. On the structure of Selmer groups of Λ-adic deformations over p-adic Lie extensions. Documenta Math. 17 (2012), 573606.

MSC classification

Variation of the algebraic λ-invariant over a solvable extension

  • DANIEL DELBOURGO (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed