Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-mm7gn Total loading time: 0.36 Render date: 2022-08-09T22:09:28.180Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Anti-symmetry of higher-order subtyping and equality by subtyping

Published online by Cambridge University Press:  21 February 2006

ADRIANA COMPAGNONI
Affiliation:
Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030, USA Email: abc@cs.stevens.edu
HEALFDENE GOGUEN
Affiliation:
AT&T Labs, 180 Park Ave., Florham Park, NJ 07932, USA Email: hhg@att.com

Abstract

This paper gives the first proof that the subtyping relation of a higher-order lambda calculus, ${\cal F}^{\omega}_{\leq}$, is anti-symmetric, establishing in the process that the subtyping relation is a partial order – reflexive, transitive, and anti-symmetric up to $\beta$-equality. While a subtyping relation is reflexive and transitive by definition, anti-symmetry is a derived property. The result, which may seem obvious to the non-expert, is technically challenging, and had been an open problem for almost a decade. In this context, typed operational semantics for subtyping, and the logical relation used to prove its equivalence with the declarative presentation of ${\cal F}^{\omega}_{\leq}$, offers a powerful new technology to solve the problem: of particular importance is our extended rule for the well-formedness of types with head variables. The paper also gives a presentation of ${\cal F}^{\omega}_{\leq}$ without a relation for $\beta$-equality, which is apparently the first such, and shows its equivalence with the traditional presentation.

Type
Paper
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
4
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Anti-symmetry of higher-order subtyping and equality by subtyping
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Anti-symmetry of higher-order subtyping and equality by subtyping
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Anti-symmetry of higher-order subtyping and equality by subtyping
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *