Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-lnsrr Total loading time: 0.35 Render date: 2021-05-09T23:59:33.815Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Database queries and constraints via lifting problems

Published online by Cambridge University Press:  11 October 2013

DAVID I. SPIVAK
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America Email: dspivak@mit.edu
Corresponding
E-mail address:

Abstract

Previous work has demonstrated that categories are useful and expressive models for databases. In the current paper we build on that model, showing that certain queries and constraints correspond to lifting problems, as found in modern approaches to algebraic topology. In our formulation, each SPARQL graph pattern query corresponds to a category-theoretic lifting problem, whereby the set of solutions to the query is precisely the set of lifts. We interpret constraints within the same formalism, and then investigate some basic properties of queries and constraints. In particular, to any database π, we can associate a certain derived database Qry(π) of queries on π. As an application, we explain how giving users access to certain parts of Qry(π), rather than direct access to π, improves the ability to manage the impact of schema evolution.

Type
Paper
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below.

References

Awodey, S. and Warren, M. A. (2009) Homotopy theoretic models of identity types. Mathematical Proceedings of the Cambridge Philosophical Society 146 (1)4555.CrossRefGoogle Scholar
Bancilhon, F and Spyratos, N. (1981) Update semantics of relational views. ACM TODS 6 557575.CrossRefGoogle Scholar
Barr, M. and Wells, C. (2005) Toposes, triples, and theories (corrected reprint of the 1985 original published by Springer-Verlag), Reprints in Theory and Applications of Categories 12 1287.Google Scholar
Borceux, F. (1994) Handbook of categorical algebra 1–3, Encyclopedia of Mathematics and its Applications 50–52, Cambridge University Press.Google Scholar
Carlsson, G., Zomorodian, A., Collins, A. and Guibas, L. (2004) Persistence barcodes for shapes. In: Scopigno, R. and Zorin, D. (eds.) Eurographics Symposium on Geometry Processing 127138.Google Scholar
Deus, H. F.et al. (2010) Provenance of microarray experiments for a better understanding of experiment results. Proceedings of The Second International Workshop on the role of Semantic Web in Provenance Management, Shanghai, China.Google Scholar
Deutsch, A., Nash, A. and Remmel, J. (2008) The Chase Revisited. Proceedings of Symposium on Principles of Database Systems (PODS), ACM.Google Scholar
Diskin, Z. and Kadish, B. (1994) Algebraic graph-oriented=category-theory-based – manifesto of categorizing data base theory. Technical report, Frame Inform Systems.Google Scholar
Dugger, D. (2008) A primer on homotopy colimits. ePrint available at http://math.uoregon.edu/~ddugger/hocolim.pdf.Google Scholar
Ehresmann, C. (1968) Esquisses et types des structures algèbriques. Buletinul Institutului Politehic din Iasi (N.S.) 14 (18) (1–2) 114.Google Scholar
Gambino, N. and Kock, J. (2013) Polynomial functors and polynomial monads. Mathematical Proceedings of the Cambridge Philosophical Society 154 153192.CrossRefGoogle Scholar
Garner, R. (2009) Understanding the small object argument. Applied Categorical Structures 17 (3)247285.CrossRefGoogle Scholar
Ghrist, R. (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society (N.S.) 45 (1)6175.CrossRefGoogle Scholar
Hartshorne, R. (1977) Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag.CrossRefGoogle Scholar
Hirschhorn, P. (2003) Model categories and their localizations, Mathematical surveys and monographs, American Mathematical Society 99.Google Scholar
Johnson, M. (2001) On Category Theory as a (meta) Ontology for Information Systems Research. Proceedings of the international conference on Formal Ontology in Information Systems.Google Scholar
Johnson, M., Rosebrugh, R. and Wood, R. J. (2002) Entity-relationship-attribute designs and sketches. Theory and Applications of Categories 10 94112.Google Scholar
Johnstone, P. (2002) Sketches of an elephant 1-2, Oxford logic guides 43–44, The Clarendon Press.Google Scholar
Joyal, A. (2002) Quasi-categories and Kan complexes. Journal of Pure and Applied Algebra 175 (1–3)207222.CrossRefGoogle Scholar
Joyal, A. (2010) Catlab. (Available online at http://ncatlab.org/joyalscatlab/show/Factorisation+systems.)Google Scholar
Kato, A. (1983) An abstract relational model and natural join functors. Bulletin of Informatics and Cybernetics 20 95106.Google Scholar
Kelly, G. M. (1974) On clubs and doctrines. In: Kelly, G. M. (ed.) Category Seminar. Springer-Verlag Lecture Notes in Mathematics 420 181256.CrossRefGoogle Scholar
Lurie, J. (2009) Higher topos theory, Annals of Mathematical Studies 170, Princeton University Press.Google Scholar
Mac Lane, S. (1988) Categories for the working mathematician (second edition), Graduate texts in mathematics 5, Springer Verlag.Google Scholar
Mac Lane, S. and Moerdijk, I. (1994) Sheaves in Geometry and Logic: a first introduction to topos theory, Universitext, Springer-Verlag.Google Scholar
Makkai, M. (1997) Generalized sketches as a framework for completeness theorems I. Journal of Pure and Applied Algebra 115 (1)4979.CrossRefGoogle Scholar
May, J. P. (1999) A concise course in Algebraic Topology, Chicago Lectures in Mathematics, University of Chicago Press.Google Scholar
Morava, J. (2012) Theories of anything. (Available at http://arxiv.org/abs/1202.0684v1.)Google Scholar
Prud'hommeaux, E. and Seaborne, A. (eds.) (2008) SPARQL Query Language for RDF: W3C Recommendation 2008/01/15. (Available at http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/.)Google Scholar
Quillen, D. G. (1967) Homotopical Algebra. Springer-Verlag Lecture Notes in Mathematics 43.CrossRefGoogle Scholar
Spivak, D. I. (2009) Simplicial databases. (Available at http://arxiv.org/abs/0904.2012.)Google Scholar
Spivak, D. I. (2012) Functorial data migration. Information and Computation 217 3151.CrossRefGoogle Scholar
Spivak, D. I. and Kent, R. E. (2012) Ologs: A Categorical Framework for Knowledge Representation. PLoS ONE 7 (1).CrossRefGoogle Scholar
Tuijn, C. and Gyssens, M. (1992) Views and decompositions from a categorical perspective. In: Biskup, J. and Hull, R. (eds.) Database Theory – ICDT '92: Proceedings 4th International Conference. Springer-Verlag Lecture Notes in Computer Science 646 99112.CrossRefGoogle Scholar
Voevodsky, V. (2006) A very short note on the homotopy λ-calculus. Unpublished note.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Database queries and constraints via lifting problems
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Database queries and constraints via lifting problems
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Database queries and constraints via lifting problems
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *