Published online by Cambridge University Press: 01 December 2008
Logical relations and their generalisations are a fundamental tool in proving properties of lambda calculi, for example, for yielding sound principles for observational equivalence. We propose a natural notion of logical relations that is able to deal with the monadic types of Moggi's computational lambda calculus. The treatment is categorical, and is based on notions of subsconing, mono factorisation systems and monad morphisms. Our approach has a number of interesting applications, including cases for lambda calculi with non-determinism (where being in a logical relation means being bisimilar), dynamic name creation and probabilistic systems.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.