Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-54vk6 Total loading time: 0.377 Render date: 2022-08-08T06:55:10.008Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Relating operational and denotational semantics for input/output effects

Published online by Cambridge University Press:  01 April 1999

ROY L. CROLE
Affiliation:
Department of Mathematics and Computer Science, University of Leicester, Leicester, UK
ANDREW D. GORDON
Affiliation:
University of Cambridge Computer Laboratory, Cambridge, UK

Abstract

We study the longstanding problem of semantics for input/output (I/O) expressed using side-effects. Our vehicle is a small higher-order imperative language, with operations for interactive character I/O and based on ML syntax. Unlike previous theories, we present both operational and denotational semantics for I/O effects. We use a novel labelled transition system that uniformly expresses both applicative and imperative computation. We make a standard definition of bisimilarity and prove bisimilarity is a congruence using Howe's method.

Next, we define a metalanguage [Mscr ] in which we may give a denotational semantics to [Oscr ]. [Mscr ] generalises Crole and Pitts' FIX-logic by adding in a parameterised recursive datatype, which is used to model I/O. [Mscr ] comes equipped both with an operational semantics and a domain-theoretic semantics in the category [Cscr ][Pscr ][Pscr ][Oscr ] of cppos (bottom-pointed posets with joins of ω-chains) and Scott continuous functions. We use the [Cscr ][Pscr ][Pscr ][Oscr ] semantics to prove that [Mscr ] is computationally adequate for the operational semantics using formal approximation relations. The existence of such relations is based on recent work of Pitts (Pitts 1994b) for untyped languages, and uses the idea of minimal invariant objects due to Freyd.

A monadic-style textual translation into [Mscr ] induces a denotational semantics on [Oscr ]. Our final result validates the denotational semantics: if the denotations of two [Oscr ] programs are equal, then the [Oscr ] programs are in fact operationally equivalent.

Type
Research Article
Copyright
1999 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
2
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Relating operational and denotational semantics for input/output effects
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Relating operational and denotational semantics for input/output effects
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Relating operational and denotational semantics for input/output effects
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *