Published online by Cambridge University Press: 01 August 2009
By studying two unsharp quantum structures, namely extended lattice ordered effect algebras and lattice ordered QMV algebras, we obtain some characteristic theorems of MV algebras. We go on to discuss automata theory based on these two unsharp quantum structures. In particular, we prove that an extended lattice ordered effect algebra (or a lattice ordered QMV algebra) is an MV algebra if and only if a certain kind of distributive law holds for the sum operation. We introduce the notions of (quantum) finite automata based on these two unsharp quantum structures, and discuss closure properties of languages and the subset construction of automata. We show that the universal validity of some important properties (such as sum, concatenation and subset constructions) depend heavily on the above distributive law. These generalise results about automata theory based on sharp quantum logic.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.