Skip to main content
×
×
Home

Autostability spectra for decidable structures

  • NIKOLAY BAZHENOV (a1) (a2)
Abstract

We study autostability spectra relative to strong constructivizations (SC-autostability spectra). For a decidable structure $\mathcal{S}$ , the SC-autostability spectrum of $\mathcal{S}$ is the set of all Turing degrees capable of computing isomorphisms among arbitrary decidable copies of $\mathcal{S}$ . The degree of SC-autostability for $\mathcal{S}$ is the least degree in the spectrum (if such a degree exists).

We prove that for a computable successor ordinal α, every Turing degree c.e. in and above 0 (α) is the degree of SC-autostability for some decidable structure. We show that for an infinite computable ordinal β, every Turing degree c.e. in and above 0 (2β+1) is the degree of SC-autostability for some discrete linear order. We prove that the set of all PA-degrees is an SC-autostability spectrum. We also obtain similar results for autostability spectra relative to n-constructivizations.

Copyright
References
Hide All
Alaev, P.E. (2004). Hyperarithmetical Boolean algebras with a distinguished ideal. Siberian Mathematical Journal 45 (5) 795805.
Anderson, B.A. and Csima, B.F. (2016). Degrees that are not degrees of categoricity. Notre Dame Journal of Formal Logic 57 (3) 389398.
Ash, C.J. (1986a). Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees. Transactions of the American Mathematical Society 298 497514.
Ash, C.J. (1986b). Stability of recursive structures in arithmetical degrees. Annals of Pure and Applied Logic 32 113135.
Ash, CJ. (1987). Categoricity in hyperarithmetical degrees. Annals of Pure and Applied Logic 34 (1) 114.
Ash, C.J. and Knight, J.F. (1990). Pairs of recursive structures. Annals of Pure and Applied Logic 46 (3) 211234.
Ash, C.J. and Knight, J.F. (2000). Computable Structures and the Hyperarithmetical Hierarchy. Studies in Logic and the Foundations of Mathematics, volume 144, Elsevier Science B.V.
Ash, C., Knight, J., Manasse, M. and Slaman, T. (1989). Generic copies of countable structures. Annals of Pure and Applied Logic 42 (3) 195205.
Bazhenov, N.A. (2013). Degrees of categoricity for superatomic Boolean algebras. Algebra Logic 52 (3) 179187.
Bazhenov, N.A. (2014). Hyperarithmetical categoricity of Boolean algebras of type Bα × η). Journal of Mathematical Sciences 202 (1) 4049.
Bazhenov, N.A. (2015a). Autostability spectra for Boolean algebras. Algebra Logic 53 (6) 502505.
Bazhenov, N. (2015b). Prime model with no degree of autostability relative to strong constructivizations. In: Evolving Computability. Lecture Notes in Computer Science 9136, Springer, 117126.
Bazhenov, N.A. (to appear). Degrees of autostability for linear orderings and linearly ordered abelian groups. Algebra Logic
Bazhenov, N.A. (2016). Degrees of autostability relative to strong constructivizations for Boolean algebras. Algebra Logic 55 (2) 87102.
Chang, C.C. and Keisler, H.J. (1973). Model Theory. Elsevier, North-Holland.
Chisholm, J. (1990). Effective model theory vs. recursive model theory. The Journal of Symbolic Logic 55 (3) 11681191.
Chisholm, J., Fokina, E.B., Goncharov, S.S., Harizanov, V.S., Knight, J.F. and Quinn, S. (2009). Intrinsic bounds on complexity and definability at limit levels. The Journal of Symbolic Logic 74 (3) 10471060.
Csima, B.F., Franklin, J.N.Y. and Shore, R.A. (2013). Degrees of categoricity and the hyperarithmetic hierarchy. Notre Dame Journal of Formal Logic 54 (2) 215231.
Downey, R.G. (1998). Computability theory and linear orderings. In: Ershov, Yu.L., Goncharov, S.S., Nerode, A. and Remmel, J.B. (eds.) Handbook of Recursive Mathematics 2 Studies in Logic and the Foundations of Mathematics, volume 139, Elsevier Science B.V, 823976.
Downey, R.G., Kach, A.M., Lempp, S., Lewis-Pye, A.E.M., Montalbán, A. and Turetsky, D.D. (2015). The complexity of computable categoricity. Advances in Mathematics 268 423466.
Ershov, Yu.L. (1964). Decidability of the elementary theory of distributive lattices with relative complements and the theory of filters. Algebra Logika 3 (3) 1738.
Ershov, Yu.L. and Goncharov, S.S. (2000). Constructive Models. Kluwer Academic/Plenum Publishers.
Fokina, E., Frolov, A. and Kalimullin, I. (2016). Categoricity spectra for rigid structures. Notre Dame Journal of Formal Logic 57 (1) 4557.
Fokina, E.B., Goncharov, S.S., Harizanov, V., Kudinov, O.V. and Turetsky, D. (2015). Index sets for n-decidable structures categorical relative to m-decidable presentations. Algebra Logic 54 (4) 336341.
Fokina, E.B., Kalimullin, I. and Miller, R. (2010). Degrees of categoricity of computable structures. Archive for Mathematical Logic 49 (1) 5167.
Fröhlich, A. and Shepherdson, J.C. (1956). Effective procedures in field theory. Philosophical Transactions of the Royal Society of London A 248 (950) 407432.
Frolov, A.N. (2012). Linear orderings. Coding theorems. Uchenye Zapiski Kazanskogo Universiteta, Seriya Fiziko-Matematicheskie Nauki. Kazan, 154 (2) 142151. (In Russian).
Frolov, A.N. (2015). Effective categoricity of computable linear orderings. Algebra Logic 54 (5) 415417.
Goncharov, S.S. (1977). The quantity of nonautoequivalent constructivizations. Algebra Logic 16 (3) 169185.
Goncharov, S.S. (1997). Countable Boolean Algebras and Decidability. Consultants Bureau.
Goncharov, S.S. (2011). Degrees of autostability relative to strong constructivizations. Proceedings of the Steklov Institute of Mathematics 274 105115.
Goncharov, S.S., Bazhenov, N.A. and Marchuk, M.I. (2015a). Index sets of autostable relative to strong constructivizations constructive models for familiar classes. Doklady Mathematics 92 (2) 525527.
Goncharov, S.S., Bazhenov, N.A. and Marchuk, M.I. (2015b). The index set of Boolean algebras autostable relative to strong constructivizations. Siberian Mathematical Journal 56 (3) 393404.
Goncharov, S., Harizanov, V., Knight, J., McCoy, C., Miller, R. and Solomon, R. (2005). Enumerations in computable structure theory. Annals of Pure and Applied Logic 136 (3) 219246.
Goncharov, S.S. and Marchuk, M.I. (2015a). Index sets of constructive models of bounded signature that are autostable relative to strong constructivizations. Algebra Logic 54 (2) 108126.
Goncharov, S.S. and Marchuk, M.I. (2015b). Index sets of constructive models of nontrivial signature autostable relative to strong constructivizations. Doklady Mathematics 91 (2) 158159.
Hirschfeldt, D.R., Khoussainov, B., Shore, R.A. and Slinko, A.M. (2002). Degree spectra and computable dimensions in algebraic structures. Annals of Pure and Applied Logic 115 (1–3) 71113.
Jockusch, C.G. and Soare, R.I. (1972). Π0 1 classes and degrees of theories. Transactions of the American Mathematical Society 173 3356.
Langford, C.H. (1926). Some theorems on deducibility. Annals of Mathematics (2) 28 1640.
Mal'tsev, A.I. (1961). Constructive algebras. I. Russian Mathematical Surveys 16 (3) 77129.
Mal'tsev, A.I. (1962). On recursive abelian groups. Soviet Mathematics – Doklady 32 14311434.
Miller, R. (2009). d-computable categoricity for algebraic fields. Journal of Symbolic Logic 74 (4) 13251351.
Miller, R., Poonen, B., Schoutens, H. and Shlapentokh, A. (to appear). A computable functor from graphs to fields. arXiv:1510.07322
Miller, R. and Shlapentokh, A. (2015). Computable categoricity for algebraic fields with splitting algorithms. Transactions of the American Mathematical Society 367 (6) 39553980.
Moses, M. (1984). Recursive linear orders with recursive successivities. Annals of Pure and Applied Logic 27 (3) 253264.
Rosenstein, J.G. (1982). Linear Orderings. Pure and Applied Mathematics, volume 98, Academic Press.
Scott, D. (1962). Algebras of sets binumerable in complete extensions of arithmetic. In: Proceedings of Symposia in Pure Mathematics, volume V, American Mathematical Society 117–121.
Simpson, S.G. (1977). Degrees of unsolvability: A survey of results. In: Barwise, J. (ed.) Handbook of Mathematical Logic, Studies in Logic and the Foundations of Mathematics, volume 90, Elsevier, North-Holland 631652.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed