Alaev, P.E. (2004). Hyperarithmetical Boolean algebras with a distinguished ideal. Siberian Mathematical Journal
45
(5)
795–805.

Anderson, B.A. and Csima, B.F. (2016). Degrees that are not degrees of categoricity. Notre Dame Journal of Formal Logic
57
(3)
389–398.

Ash, C.J. (1986a). Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees. Transactions of the American Mathematical Society
298
497–514.

Ash, C.J. (1986b). Stability of recursive structures in arithmetical degrees. Annals of Pure and Applied Logic
32
113–135.

Ash, CJ. (1987). Categoricity in hyperarithmetical degrees. Annals of Pure and Applied Logic
34
(1)
1–14.

Ash, C.J. and Knight, J.F. (1990). Pairs of recursive structures. Annals of Pure and Applied Logic
46
(3)
211–234.

Ash, C.J. and Knight, J.F. (2000). Computable Structures and the Hyperarithmetical Hierarchy. Studies in Logic and the Foundations of Mathematics, volume 144, Elsevier Science B.V.

Ash, C., Knight, J., Manasse, M. and Slaman, T. (1989). Generic copies of countable structures. Annals of Pure and Applied Logic
42
(3)
195–205.

Bazhenov, N.A. (2013). Degrees of categoricity for superatomic Boolean algebras. Algebra Logic
52
(3)
179–187.

Bazhenov, N.A. (2014). Hyperarithmetical categoricity of Boolean algebras of type *B*(ω^{α} × η). Journal of Mathematical Sciences
202
(1)
40–49.

Bazhenov, N.A. (2015a). Autostability spectra for Boolean algebras. Algebra Logic
53
(6)
502–505.

Bazhenov, N. (2015b). Prime model with no degree of autostability relative to strong constructivizations. In: Evolving Computability. Lecture Notes in Computer Science **9136**, Springer, 117–126.

Bazhenov, N.A. (to appear). Degrees of autostability for linear orderings and linearly ordered abelian groups. *Algebra Logic*

Bazhenov, N.A. (2016). Degrees of autostability relative to strong constructivizations for Boolean algebras. Algebra Logic
55
(2)
87–102.

Chang, C.C. and Keisler, H.J. (1973). Model Theory. Elsevier, North-Holland.

Chisholm, J. (1990). Effective model theory vs. recursive model theory. The Journal of Symbolic Logic
55
(3)
1168–1191.

Chisholm, J., Fokina, E.B., Goncharov, S.S., Harizanov, V.S., Knight, J.F. and Quinn, S. (2009). Intrinsic bounds on complexity and definability at limit levels. The Journal of Symbolic Logic
74
(3)
1047–1060.

Csima, B.F., Franklin, J.N.Y. and Shore, R.A. (2013). Degrees of categoricity and the hyperarithmetic hierarchy. Notre Dame Journal of Formal Logic
54
(2)
215–231.

Downey, R.G. (1998). Computability theory and linear orderings. In: Ershov, Yu.L., Goncharov, S.S., Nerode, A. and Remmel, J.B. (eds.) Handbook of Recursive Mathematics
**2** Studies in Logic and the Foundations of Mathematics, volume 139, Elsevier Science B.V, 823–976.

Downey, R.G., Kach, A.M., Lempp, S., Lewis-Pye, A.E.M., Montalbán, A. and Turetsky, D.D. (2015). The complexity of computable categoricity. Advances in Mathematics
268
423–466.

Ershov, Yu.L. (1964). Decidability of the elementary theory of distributive lattices with relative complements and the theory of filters. Algebra Logika
3
(3)
17–38.

Ershov, Yu.L. and Goncharov, S.S. (2000). Constructive Models. Kluwer Academic/Plenum Publishers.

Fokina, E., Frolov, A. and Kalimullin, I. (2016). Categoricity spectra for rigid structures. Notre Dame Journal of Formal Logic
57
(1)
45–57.

Fokina, E.B., Goncharov, S.S., Harizanov, V., Kudinov, O.V. and Turetsky, D. (2015). Index sets for *n*-decidable structures categorical relative to *m*-decidable presentations. Algebra Logic
54
(4)
336–341.

Fokina, E.B., Kalimullin, I. and Miller, R. (2010). Degrees of categoricity of computable structures. Archive for Mathematical Logic
49
(1)
51–67.

Fröhlich, A. and Shepherdson, J.C. (1956). Effective procedures in field theory. Philosophical Transactions of the Royal Society of London A
248
(950)
407–432.

Frolov, A.N. (2012). Linear orderings. Coding theorems. Uchenye Zapiski Kazanskogo Universiteta, Seriya Fiziko-Matematicheskie Nauki. Kazan, 154
(2)
142–151. (In Russian).

Frolov, A.N. (2015). Effective categoricity of computable linear orderings. Algebra Logic
54
(5)
415–417.

Goncharov, S.S. (1977). The quantity of nonautoequivalent constructivizations. Algebra Logic
16
(3)
169–185.

Goncharov, S.S. (1997). Countable Boolean Algebras and Decidability. Consultants Bureau.

Goncharov, S.S. (2011). Degrees of autostability relative to strong constructivizations. Proceedings of the Steklov Institute of Mathematics
274
105–115.

Goncharov, S.S., Bazhenov, N.A. and Marchuk, M.I. (2015a). Index sets of autostable relative to strong constructivizations constructive models for familiar classes. Doklady Mathematics
92
(2)
525–527.

Goncharov, S.S., Bazhenov, N.A. and Marchuk, M.I. (2015b). The index set of Boolean algebras autostable relative to strong constructivizations. Siberian Mathematical Journal
56
(3)
393–404.

Goncharov, S., Harizanov, V., Knight, J., McCoy, C., Miller, R. and Solomon, R. (2005). Enumerations in computable structure theory. Annals of Pure and Applied Logic
136
(3)
219–246.

Goncharov, S.S. and Marchuk, M.I. (2015a). Index sets of constructive models of bounded signature that are autostable relative to strong constructivizations. Algebra Logic
54
(2)
108–126.

Goncharov, S.S. and Marchuk, M.I. (2015b). Index sets of constructive models of nontrivial signature autostable relative to strong constructivizations. Doklady Mathematics
91
(2)
158–159.

Hirschfeldt, D.R., Khoussainov, B., Shore, R.A. and Slinko, A.M. (2002). Degree spectra and computable dimensions in algebraic structures. Annals of Pure and Applied Logic
115
(1–3)
71–113.

Jockusch, C.G. and Soare, R.I. (1972). Π^{0}
_{1} classes and degrees of theories. Transactions of the American Mathematical Society
173
33–56.

Langford, C.H. (1926). Some theorems on deducibility. Annals of Mathematics (2)
28
16–40.

Mal'tsev, A.I. (1961). Constructive algebras. I. Russian Mathematical Surveys
16
(3)
77–129.

Mal'tsev, A.I. (1962). On recursive abelian groups. Soviet Mathematics – Doklady
32
1431–1434.

Miller, R. (2009). d-computable categoricity for algebraic fields. Journal of Symbolic Logic
74
(4)
1325–1351.

Miller, R., Poonen, B., Schoutens, H. and Shlapentokh, A. (to appear). A computable functor from graphs to fields. arXiv:1510.07322

Miller, R. and Shlapentokh, A. (2015). Computable categoricity for algebraic fields with splitting algorithms. Transactions of the American Mathematical Society
367
(6)
3955–3980.

Moses, M. (1984). Recursive linear orders with recursive successivities. Annals of Pure and Applied Logic
27
(3)
253–264.

Rosenstein, J.G. (1982). Linear Orderings. Pure and Applied Mathematics, volume 98, Academic Press.

Scott, D. (1962). Algebras of sets binumerable in complete extensions of arithmetic. In: *Proceedings of Symposia in Pure Mathematics*, volume V, American Mathematical Society 117–121.

Simpson, S.G. (1977). Degrees of unsolvability: A survey of results. In: Barwise, J. (ed.) Handbook of Mathematical Logic, Studies in Logic and the Foundations of Mathematics, volume 90, Elsevier, North-Holland
631–652.