Abramsky S. and Jung A. (1994) Domain theory. In: Abramsky S., Gabbay Dov M. and Maibaum T. S. E. (eds.) Handbook of Logic in Computer Science, volume 3, Oxford University Press.

Bennett H. and Lutzer D. (2009) Strong completeness properties in topology. Questions and Answers in General Topology
27
107–12.

Choquet G. (1969) *Lectures on Analysis. Volume I: Integration and Topological Vector Spaces*, Benjamin.

de Brecht M. (2013) Quasi-Polish spaces. Annals of Pure and Applied Logic
164
(3)
356–381.

Debs G. (1984) An example of an α-favourable topological space with no α-winning tactic. *Séminaire d'Initiation a l'Analyse (Choquet-Rogalski-Saint Raymond)*.

Debs G. (1985) Stratégies gagnantes dans certains jeux topologiques. Fundamenta Mathematicae
126
93–105.

Dehornoy P. (1986) Turing complexity of the ordinals. Information Processing Letters
23
(4)
167–170.

Dorais F. G. and Mummert C. (2010) Stationary and convergent strategies in Choquet games. Fundamenta Mathematicae
209
59–79.

Edalat A. (1997) Domains for computation in mathematics, physics and exact real arithmetic. Bulletin of Symbolic Logic
3
(4)
401–452.

Ershov Y. (1968) On a hierarchy of sets II. Algebra and Logic
7
(4)
15–47.

Galvin F. and Telgárky R. (1986) Stationary strategies in topological games. Topology and its Applications
22
51–69.

Gierz G., Hofmann K. H., Keimel K., Lawson J. D., Mislove M. and Scott D. S. (2003) Continuous Lattices and Domains, Cambridge University Press.

Grigorieff S. (1990) Every recursive linear ordering has an isomorphic copy in DTIME-SPACE(*n*, log(*n*)). Journal of Symbolic Logic
55
(1)
260–276.

Hertling P. (1996a) *Unstetigkeitgrade con Funktionen in der effektiven Analysis*, Ph.D. thesis, FernUniversity in Hagen.

Hertling P. (1996b) Topological complexity with continuous operations. Journal of Complexity
12
(4)
315–338.

Kechris A. S. (1995) Classical Descriptive Set Theory, Springer.

Künzi H.-P. (1983) On strongly quasi-metrizable spaces. Archiv der Mathematik
41
(1)
57–63.

Kuratowski K. (1966) Topology, volume I, Academic Press.

Moschovakis Y. (1979/2009) Descriptive Set Theory, volume 155, American Mathematical Society. (First edition 1979, second edition 2009.)

Oxtoby J. C. (1957) The Banach–Mazur game and Banach category theorem. In: *Contributions to the theory of games*, volume III; Annals of Mathematics Studies
39
159–163.

Schmidt W. W. (1966) On badly approximable numbers and certain games. Transactions of the American Mathematical Society
123
178–199.

Selivanov V. L. (2003) Wadge degrees of ω-languages of deterministic Turing machines. Theoretical Informatics and Applications
37
(1)
67–83.

Selivanov V. L. (2003) Wadge degrees of ω-languages of deterministic Turing machines. In: Extended abstract in STACS 2003 Proceedings. Lecture Notes in Computer Science
2607
97–108.

Selivanov V. L. (2005) Hierarchies in ϕ-spaces and applications. Mathematical Logic Quarterly
51
(1)
45–61.

Selivanov V. L. (2006) Towards a descriptive set theory for domain-like structures. Theoretical Computer Science
365
(3)
258–282.

Selivanov V. L. (2008) On the difference hierarchy in countably based *T*
_{0}-spaces. Electronic Notes in Theoretical Computer Science
221
257–269.

Spector C. (1955) Recursive well-orderings. Journal of Symbolic Logic
20
(2)
151–163.

Tang A. (1981) Wadge reducibility and Hausdorff difference hierarchy in *Pω*
. Lectures Notes in Mathematics
871
360–371.

Weihrauch K. (2000) Computable Analysis. An Introduction, Springer.