Skip to main content

Cellular automata over generalized Cayley graphs


It is well-known that cellular automata can be characterized as the set of translation-invariant continuous functions over a compact metric space; this point of view makes it easy to extend their definition from grids to Cayley graphs. Cayley graphs have a number of useful features: the ability to graphically represent finitely generated group elements and their relations; to name all vertices relative to an origin; and the fact that they have a well-defined notion of translation. We propose a notion of graphs, which preserves or generalizes these features. Whereas Cayley graphs are very regular, generalized Cayley graphs are arbitrary, although of a bounded degree. We extend cellular automata theory to these arbitrary, bounded degree, time-varying graphs. The obtained notion of cellular automata is stable under composition and under inversion.

Hide All
Arrighi, P. and Dowek, G. (2012). Causal graph dynamics. In: Proceedings of ICALP 2012, Warwick, Lecture Notes in Computer Science, vol. 7392, 54–66.
Arrighi, P., Fargetton, R., Nesme, V. and Thierry, E. (2011). Applying causality principles to the axiomatization of probabilistic cellular automata. In: Proceedings of CiE 2011, Sofia, Lecture Notes in Computer Science, vol. 6735, 1–10.
Arrighi, P., Martiel, S. and Wang, Z. (2014). Causal dynamics over discrete surfaces. In: Ayala-Rincón, M., Bonelli, E. and Mackie, I. (eds.) Proceedings 9th International Workshop on Developments in Computational Models, Buenos Aires, Argentina, 26 August 2013, Electronic Proceedings in Theoretical Computer Science, vol. 144, Open Publishing Association, 3040.
Arrighi, P., Nesme, V. and Werner, R.F. (2008). Quantum cellular automata over finite, unbounded configurations. In: Proceedings of LATA, Lecture Notes in Computer Science, vol. 5196, Springer, 64–75.
Boehm, P., Fonio, H. R. and Habel, A. (1987). Amalgamation of graph transformations: A synchronization mechanism. Journal of Computer and System Sciences 34 (2–3) 377408.
Ceccherini-Silberstein, T. and Coornaert, M. (2010). Cellular Automata and Groups, Springer Verlag.
Ceccherini-Silberstein, T., Fiorenzi, F. and Scarabotti, F. (2004). The Garden of Eden Theorem for cellular automata and for symbolic dynamical systems. In: Random Walks and Geometry. Proceedings of a Workshop at the Erwin Schrödinger Institute, Vienna, June 18–July 13, 2001. In collaboration with Klaus Schmidt and Wolfgang Woess. Collected papers, Berlin: de Gruyter, 73108.
Danos, V., Feret, J., Fontana, W., Harmer, R., Hayman, J., Krivine, J., Thompson-Walsh, C. and Winskel, G. (2012). Graphs, rewriting and pathway reconstruction for rule-based models. In: FSTTCS 2012-IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, vol. 18, 276–288.
Derbel, B., Mosbah, M. and Gruner, S. (2008). Mobile agents implementing local computations in graphs. In: Ehrig, H., Heckel, R., Rozenberg, G. and Taentzer, G. (eds.) Graph Transformations: 4th International Conference, ICGT 2008, Leicester, United Kingdom, September 7–13, 2008. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, 99114.
Dürr, C. and Santha, M. (1996). A decision procedure for unitary linear quantum cellular automata. In: Proceedings of the 37th IEEE Symposium on Foundations of Computer Science, IEEE, 38–45.
Ehrig, H. and Lowe, M. (1993). Parallel and distributed derivations in the single-pushout approach. Theoretical Computer Science 109 (1–2) 123143.
Fedorchuk, V. V., Arkhangelskiui, A. V. and Pontriagin, L.S. (1990). General Topology I, vol. 1, Springer.
Giavitto, J.L. and Spicher, A. (2008). Topological rewriting and the geometrization of programming. Physica D: Nonlinear Phenomena 237 (9) 13021314.
Godsil, C. D., Royle, G. and Godsil, C. D. (2001). Algebraic Graph Theory, vol. 8, Springer-Verlag, New York.
Gromov, M. (April 1999). Endomorphisms of symbolic algebraic varieties. Journal of the European Mathematical Society 1 (2) 109197.
Gruner, S. (2010). Mobile agent systems and cellular automata. Autonomous Agents and Multi-Agent Systems 20 198233. 10.1007/s10458-009-9090-0.
Hasslacher, B. and Meyer, D. A. (June 1998). Modelling dynamical geometry with lattice gas automata. Expanded version of a talk presented at the Seventh International Conference on the Discrete Simulation of Fluids held at the University of Oxford.
Hedlund, G. A. (1969). Endomorphisms and automorphisms of the shift dynamical system. Math. Systems Theory 3 320375.
Kari, K. (2011). Cellular Automata, Lecture notes. Available at:
Klales, A., Cianci, D., Needell, Z., Meyer, D. A. and Love, P. J. (Oct. 2010). Lattice gas simulations of dynamical geometry in two dimensions. Physical Review E 82 (4) 046705.
Kreowski, H. J. and Kuske, S. (2007). Autonomous units and their semantics - The parallel case. In: Fiadeiro, J. L. and Schobbens, P.-Y. (eds.) Recent Trends in Algebraic Development Techniques: 18th International Workshop, WADT 2006, La Roche en Ardenne, Belgium, June 1–3, 2006, Revised Selected Papers, Springer Berlin Heidelberg, 5673.
Kreowski, H. J. and Kuske, S. (2011). Graph multiset transformation: A new framework for massively parallel computation inspired by dna computing. Natural Computing 10 (2) 961986.
Kurth, W., Kniemeyer, O. and Buck-Sorlin, G. (2005). Relational growth grammars – A graph rewriting approach to dynamical systems with a dynamical structure. In: Banâtre, J.-P., Fradet, P., Giavitto, J.-L. and Michel, O. (eds.) Unconventional Programming Paradigms: International Workshop UPP 2004, Le Mont Saint Michel, France, September 15–17, 2004, Revised Selected and Invited Papers, Springer Berlin Heidelberg, 5672.
Löwe, M. (1993). Algebraic approach to single-pushout graph transformation. Theoretical Computer Science 109 (1–2) 181224.
Martiel, S. and Martin, B. (2013). Intrinsic universality of causal graph dynamics. In: Neary, T. and Cook, M. (eds.) Proceedings Machines, Computations and Universality 2013, Zürich, Switzerland, 9/09/2013–11/09/2013, Electronic Proceedings in Theoretical Computer Science, vol. 128, Open Publishing Association, 137–149.
Martiel, S. and Martin, B. (2015). An intrinsically universal family of causal graph dynamics. In: Durand-Lose, J. and Nagy, B. (eds.) Machines, Computations, and Universality: 7th International Conference, MCU 2015, Famagusta, North Cyprus, September 9–11, 2015. Proceedings, Springer International Publishing, Cham, 129148.
Métivier, Y. and Sopena, E. (1997). Graph relabelling systems: A general overview. Computers & Artificial Intelligence 16 167185.
Papazian, C. and Remila, E. (2002). Hyperbolic recognition by graph automata. In: Proceedings of the Automata, Languages and Programming: 29th International Colloquium, ICALP 2002, Málaga, Spain, vol. 2380, Springer Verlag, 330.
Regge, T. (1961). General relativity without coordinates. Il Nuovo Cimento (1955–1965) 19 (3) 558571.
Róka, Z. (1999). Simulations between cellular automata on Cayley graphs. Theoretical Computer Science 225 (1–2) 81111.
Ryszka, I., Paszyska, A., Grabska, E., Sieniek, M. and Paszyski, M. (2015a). Graph transformation systems for modeling three dimensional finite element method: Part i. Fundamenta Informaticae 140 (2) 129172.
Ryszka, I., Paszyska, A., Grabska, E., Sieniek, M. and Paszyski, M. (2015b). Graph transformation systems for modeling three dimensional finite element method: Part ii. Fundamenta Informaticae 140 (2) 173203.
Schumacher, B. and Werner, R. (2004). Reversible quantum cellular automata. ArXiv pre-print quant-ph/0405174.
Sorkin, R. (1975). Time-evolution problem in Regge calculus. Physical Review D. 12 (2) 385396.
Taentzer, G. (1996). Parallel and Distributed Graph Transformation: Formal Description and Application to Communication-Based Systems. PhD thesis, Technische Universitat Berlin.
Taentzer, G. (1997). Parallel high-level replacement systems. Theoretical Computer Science 186 (1–2) 4381.
Tomita, K., Kurokawa, H. and Murata, S. (2002). Graph automata: Natural expression of self-reproduction. Physica D: Nonlinear Phenomena 171 (4) 197210.
Tomita, K., Kurokawa, H. and Murata, S. (2009). Graph-rewriting automata as a natural extension of cellular automata. In: Gross, T. and Sayama, H. (eds.) Adaptive Networks, Understanding Complex Systems, vol. 51, Springer, Berlin/Heidelberg, 291309.
Tomita, K., Murata, S., Kamimura, A. and Kurokawa, H. (2005). Self-description for construction and execution in graph rewriting automata. In: Capcarrère, M. S., Freitas, A. A., Bentley, P. J., Johnson, C. G. and Timmis, J. (eds.) Advances in Artificial Life: 8th European Conference, ECAL 2005, Canterbury, UK, September 5–9, 2005, Springer Berlin Heidelberg. Proceedings, 705715.
Von Mammen, S., Phillips, D., Davison, T. and Jacob, C. (2010). A graph-based developmental swarm representation and algorithm. In: Dorigo, M., Birattari, M., Di Caro, G. A., Doursat, R., Engelbrecht, A. P., Floreano, D., Gambardella, L. M., Gross, R., Sahin, E., Stützle, Th. and Sayama, H. (eds.) Swarm Intelligence: 7th International Conference, ANTS 2010, Brussels, Belgium, September 8–10, 2010, Springer Berlin Heidelberg. Proceedings, 112.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 23 *
Loading metrics...

Abstract views

Total abstract views: 188 *
Loading metrics...

* Views captured on Cambridge Core between 29th May 2017 - 17th March 2018. This data will be updated every 24 hours.